
Compiling Volatile Correctly in Java
Shuyang Liu #�

University of California, Los Angeles, United States

John Bender #

Sandia National Laboratories, United States

Jens Palsberg #

University of California, Los Angeles, United States

Abstract
The compilation scheme for Volatile accesses in the OpenJDK 9 HotSpot Java Virtual Machine

has a major problem that persists despite a recent bug report and a long discussion. One of the
suggested fixes is to let Java compile Volatile accesses in the same way as C/C++11. However, we
show that this approach is invalid for Java. Indeed, we show a set of optimizations that is valid for
C/C++11 but invalid for Java, while the compilation scheme is similar. We prove the correctness of
the compilation scheme to Power and x86 and a suite of valid optimizations in Java. Our proofs are
based on a language model that we validate by proving key properties such as the DRF-SC theorem
and by running litmus tests via our implementation of Java in Herd7.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases formal semantics, concurrency, compilation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.23

Acknowledgements We thank Doug Lea for the helpful insights on the Java language semantics and
compilers; we thank Ori Lahav, Anton Podkopaev and Viktor Vafeiadis for initially pointing out
the issue of the Java Access Modes model; we thank all the reviewers of ECOOP’22 for their useful
feedback. This material is based upon work supported by the National Science Foundation under
Grant No. 1815496.

1 Introduction

In OpenJDK 9, the Java programming language introduced the VarHandle API with Access
Modes to provide a standard set of operations that gives clear semantics to programs with
shared object fields. Among the four available Access Modes (which we will explain in
Section 3 in detail), programmers are allowed to use Volatile mode to ensure the consistency
of updates on shared variables. Conceptually, the set of Volatile mode accesses in a program is
totally ordered [9]. If all of the accesses in a program are in Volatile mode, then the program
should only have sequentially consistent executions since all accesses in that program are
totally ordered.

Sadly, this basic property of Volatile mode does not hold under the current implementation
of the Java compiler in OpenJDK 9 HotSpot JVM. That is, marking all accesses as Volatile
in a Java program can still result in behaviors that are not sequentially consistent when
compiling to Power [14]. In particular, the C1 and the C2 compilers in HotSpot do not
provide enough synchronization between a Volatile read and a Volatile write when compiling
to the Power architecture. While we leave the details of their respective compilation schemes
to Section 2, when a program includes a sequence of a Volatile read followed by a Volatile
write, there is no hwsync instruction inserted in-between. Without the hwsync, it is possible
for threads to disagree on the orders in which instructions are executed. As a consequence,
the compilation schemes can still cause violations of sequential consistency in programs with

© Shuyang Liu, John Bender, Jens Palsberg;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sliu44@cs.ucla.edu
https://orcid.org/0000-0002-1601-9086
mailto:jmbende@sandia.gov
mailto:palsberg@ucla.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Compiling Volatile Correctly in Java

all accesses marked Volatile. We have contacted the maintainers of the OpenJDK about this
issue and a bug report has been filed [18].

One solution is to add the missing hwsync instruction to restore sequential consistency
for Volatile. The resulting compilation scheme is similar to C/C++11 [4], which leads one to
wonder whether Java compilers can simply handle Access Modes the same way as C/C++11
compilers handle atomic memory orders. However, there are significant differences in the
semantics of Volatile access mode and the seq_cst memory order, which leads to differences in
the valid compiler transformations applied to them respectively. In contrast to C/C++11 [6],
Java does not allow certain compiler transformations to be applied to Volatile accesses. For
example, register promotion cannot be applied to memory locations with Volatile accesses
in Java while it can be applied in C/C++11. The differences provide Java programmers
stronger synchronization guarantees and a more intuitive reasoning process: Volatile accesses
(1) are equivalent to inserting fullFence()s, and (2) will not be optimized by the compiler
in unexpected ways. We provide a detailed comparison along with soundness proofs and
examples in Section 5.

While the change to the compilation scheme appears to be simple, the work of verifying
its soundness is challenging. First, the formal language model JAM (hereafter JAM19) [3]
exhibits the same issue as the HotSpot compilers. That is, it cannot guarantee sequential
consistency for programs with all accesses marked Volatile. Therefore, we revise the language
model to fix this issue. To ensure the change to the model is valid we formally verify its key
properties, such as the standard DRF-SC theorem, and leverage a set of empirical litmus tests
via our implementation of Java in Herd7 [1] that keeps the model valid. We call the revised
model JAM21 to distinguish from the original version. Second, the language model defines
the semantics of fullFence() with a total order. However, many target-level architectures
such as the Power memory model [14] only specify a partial observable order among their
synchronization mechanisms (fence cumulativity). Therefore, we develop an intermediate
language model, JAM ′

21, to bridge JAM21 with the target level models. We show that
JAM ′

21 yields the same observable program executions as JAM21 but does not specify a
total order among fullFence()s, which simplifies the proof for compilation correctness.

1.1 Outline
The rest of the paper is structured as follows. Section 2 explains the bug in the current Java
compiler to Power with an example. In Section 3, we explain the formal model that we use
in this paper. Section 4 provides a correctness proof for our proposed compilation scheme to
Power. Section 5 presents a set of program transformations that are valid/invalid for Java
and a comparison with C/C++11. We include a discussion on expected performance impact
in Section 6. Section 7 details some recent related work and finally, Section 8 concludes the
paper.

1.2 Supplementary Material
The proofs of the theorems appear in this paper are available in the appendices (which are
available in the full version of the paper). The following are also available as artifact of this
paper at https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material.

· The extended Herd7 tool suite with the Java architecture.
· The litmus tests that appear in this paper.
· The Coq proofs for some of the theorems in this paper.

https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material

S. Liu, J. Bender, J. Palsberg 23:3

2 The Problem of Compiling Volatile and How to Fix it

In this section we use an example to demonstrate that the approach implemented by the
HotSpot JVM compilers does not provide sequentially consistent semantics even when all
accesses use Volatile mode.

Consider the volatile-non-sc.4 example shown as an execution in Fig.1. In this example,
there are four concurrent threads (P1, P2, P3, and P4) accessing two shared integer variables
(x and y). The notation Wx = 1 means “writing to variable x with value 1”. The notation Rx
= 0 means “reading from variable x and the value returned is 0”. In addition, each variable is
initialized to 0 at the beginning before the threads start execution. The small superscript on
each memory access denotes the access mode that the access uses. For example, Rxv means
“reading with Volatile mode”.

If all of the read and write accesses in this program use Volatile mode, would the reads
ever return the values that are specified in the figure?

According to the specification [9], the program must exhibit sequentially consistent
behavior because all accesses are marked Volatile:

“When all accesses use Volatile mode, program execution is sequentially consistent, in
which case, for two Volatile mode accesses A and B, it must be that A precedes execution
of B, or vice versa.”

Therefore, we are interested in whether the example in Fig. 1 is sequentially consistent.
Sequential consistency, as first defined by [7], requires a total sequential order that preserves
program order and the values returned by the reads are compatible with this total order.
Following the definition, the execution in Fig. 1 does not satisfy sequential consistency. To
see this, we demonstrate a contradiction under the guarantees of sequential consistency.
Consider the following order constraints:

1. By program order, we know that (a) occurs before (b).
2. Since the value (b) gets is the initial value 0, it must occur before (c) writes to the

location y.
3. Then, (d) reads the value written by (c), so (c) occurs before (d).
4. By program order, (d) occurs before (e).
5. Now, looking at P4, we know that the value of x changed from 1 to 2. Therefore, we can

infer that (e) occurs before (a) since (e) is the only write to x with a value of 1 and (a) is
the only write to x with a value of 2.

In this execution, we find a cycle: (a) −→ (b) −→ (c) −→ (d) −→ (e) −→ (a) which
appears in Fig. 1 with the “occurs before” relation represented as edges in the execution
graph. Sequential consistency requires an irreflexive total order among all instructions.
Therefore, the chain formed by the total order should be acyclic, i.e., a valid execution should
not exhibit any cycle in its graph. Thus, this execution is inconsistent under sequential
consistency and should be forbidden.

However, despite the promise of sequential consistency given by the source-level Volatile
semantics, the compilation scheme found in the Java compilers for Power allows the example
execution in Fig. 1. To see this, we present the compilation scheme from the C1 compiler
which is the more conservative of HotSpot’s two compilers. We then give a Power-consistent
execution graph corresponding to the example in Fig. 1.

The Power architecture adopts a relaxed memory model and provides fence instructions to
recover sequential consistency. Two main types of fence instructions, the stronger fence hwsync

ECOOP 2022

23:4 Compiling Volatile Correctly in Java

Figure 1 volatile-non-sc.4 under the sequential consistency model, Forbidden

Figure 2 volatile-non-sc.4.ppc translated to Power by HotSpot C1, Allowed

and the weaker fence lwsync, are usually used by the compilers to enforce synchronization
guarantees. Using lwsync usually gives better performance but the synchronization guarantee
of lwsync is weaker than hwsync. In particular, while both fence instructions carries a set
of writes (Group A writes) when propagating to another thread, lwsync does not require
an acknowledgement to continue executing the instructions after it. On the other hand, a
hwsync requires an acknowledgment marking that it (along with its Group A writes) has
propagated to all threads before proceeding to the next instruction.

The compilation to Power for Volatile accesses on C1 is the following 1:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ lwsync ; stw ; hwsync

A Volatile read is compiled to a hwsync instruction followed by a load instruction and a
lwsync instruction; a Volatile write is compiled to a lwsync instruction followed by a store
instruction and a hwsync instruction.

Fig. 2 shows the example from Fig. 1 according the compilation scheme in the C1
compiler2.

The Power memory model [14] allows the behavior annotated in Fig. 2. The full trace
of the execution can be found in Appendix M. Here we give a brief explanation. First
note that a write operation is split into multiple steps and can be propagated to foreign
threads in different orders if not properly synchronized. Furthermore, the lwsync in P3 is
not sufficient in this case. In particular, the lwsync does not require an acknowledgement

1 This compilation scheme was found in the OpenJDK 13 HotSpot compiler and it follows from a previously
inaccurate description in the documentation [9] regarding the semantics of Volatile accesses. We have
contacted the author and the documentation has been corrected in the latest version while the compiler
bug (although reported) is still not fixed at the time of writing.

2 The C2 compiler yields a slightly different compilation scheme for Volatile reads: Instead of inserting a
lwsync fence after the load instruction, it emits a control dependency followed by an isync instruction,
which we denote as ctrlisync. But in this example, the resulting execution graph is effectively the same
as C1’s because the effect of ctrlisync is subsumed into the lwsync or the hwsync instruction that it
follows. In addition, we have simplified the compiled code (such as eliminating the fence instructions at
the beginning or end of the threads and merging consecutive fence instructions) without changing its
semantics for clarity here.

S. Liu, J. Bender, J. Palsberg 23:5

Figure 3 volatile-non-sc.4.ppc translated to Power using the revised compilation scheme, Forbidden

before proceeding to the next instructions and it only requires (c) Wy = 1 to be propagated
when itself needs to be propagated to the thread (the cumulativity of lwsync). Since P4
needs to read from (e) Wx = 1, which is subsequent to (B2), (B2) needs to be propagated to
P4 before (e) Wx = 1 is propagated to P4. The propagation of (B2) lwsync makes sure that
(c) Wy = 1 is propagated to P4 before it can read x (even though it doesn’t really need to
read the value of y). On the other hand, P1 does not have any instructions reads from an
instruction of P3 that comes after (in program order) (B2). Therefore, it does not require (c)
and (B2) to be propagated to it when it executes (b). As a result, (c) can be propagated to
P1 long after reaching P3 and hence letting P3 and P1 have different views of the memory
during the execution. When P1 tries to read the value of y, it can only get an initial value
of 0 since the newer value has not been propagated to P1 yet. Consequently, this non-SC
execution is allowed (consistent) under the Power memory model, despite that the semantics
of the "all-Volatile" source program requires it to be forbidden.

The solution to fix this issue is quite straightforward. Instead of letting Volatile read
be translated using "leading fence" while Volatile write be translated using "trailing fence",
they should both use the same fence inserting strategy (both leading fence or both trailing
fence).3 Therefore, the correct compiler scheme for Volatile should be:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ hwsync ; stw

With the revised compilation scheme we can demonstrate that the example of Fig. 1 is
forbidden in accordance with the required SC semantics. The resulting execution graph is
shown in Fig. 3. While most of this example matches Fig. 2, (B2) now is a hwsync instruction.
As an effect of this change, (B2) is now required to be propagated to every thread and get
acknowledged before start executing (e). As a result, at the time when (c) is propagated
to P4 (as a result of the cumulative effect of (B2) just like in Section. 2), it must also have
propagated to P1 due to the acknowledgement required by the hwsync at (B2). Therefore,
it becomes impossible for (b) to read the value 0 because Power requires reads to always
read from the latest value that has been propagated to the thread. That is, this execution is
now forbidden by Power, aligning with the sequentially consistent semantics promised by the
Java Volatile mode. Note that the reasoning is the same if we use a "trailing fence" scheme.
The key is to deploy a fence insertion strategy such that there is a hwsync fence inserted
between every pair of Volatile accesses.

3 Here we choose to show the leading fence strategy for simplicity. However, the trailing fence strategy
is symmetric to leading fence and the same correctness proof works for both conventions given it’s
used consistently (more details can be found in Section 4.1). In practice, it is usually preferable to use
trailing fence strategy for better performance.

ECOOP 2022

23:6 Compiling Volatile Correctly in Java

Interestingly, we found similar compilation schemes applied to other architectures in
HotSpot as well. This is not an accident. The source of this compiling behavior stems from
the IR phase of the compiler. At the IR (called the Ideal Graph IR in HotSpot) level, a
Volatile read is translated to a fullFence() followed by an Acquire read; a Volatile write
is translated to a Release write followed by a fullFence(). Then each compiler back end
translates the code further using the corresponding template file that maps the IR to specific
architecture instructions. In the case of Power, a fullFence() is mapped to the hwsync
instruction and Release-Acquire accesses are implemented using the lwsync instruction. While
the example we provide here focuses on the compilation to Power, the more fundamental
issue here is a lack of fullFence() between a Volatile read and a Volatile write at the IR
encoding level. JAM19 aligns with this encoding when specifying the semantics of Volatile
memory operations. As a result, JAM19 also exhibits the same problem. That is, when all
memory accesses are Volatile, JAM19 does not guarantee sequential consistency.

3 Formal Model

In this section we present the revised model JAM21, which we use as our theoretical
foundation for proving compiler correctness in the rest of the paper. We begin by introducing
the basic syntax (Section 3.1) used in the rest of the paper. Then we give the formal definition
of JAM21 in Section 3.2.

3.1 Basic Syntax
We adopt the syntax of [3] and the cat language [1] in addition to some utility functions.

Given a program P ∈ P, there is a set of executions (run-time traces) associated with P .
We call the executions histories of P and use H to denote a single history. Each execution
history consists of sets of memory access events specified by P . In particular:

· H.E denotes the whole set of memory events of H.
· H.F denotes the whole set of fence events of H.
· H.IW denotes the set of initialization writes of H.
· H.FW denotes the set of final writes of H

· H.W denotes the set of write events in H.
· H.R denotes the set of read events in H.
· H.RMW denotes the set of read-modify-write events in H.

Note that we treat each RMW events as a single event and H.RMW ⊆ H.W and H.RMW ⊆ H.R. In
addition, for RMW operations such as compare-and-swap (CAS), we assume the operation is
on its success comparison path. They are sometimes implemented using LL/SC instructions
on hardware, which cannot guarantee atomicity if the comparison fails. We assume each
write event to the same memory location has an unique value for simplicity.

For each memory event i, we define the following utility functions to extract memory
event attributes:

· H.AccessMode(i) returns the Access Mode of event i in H.
· H.val(i) returns the value of event i in H.
· H.loc(i) returns the shared memory location of event i in H.
· H.T id(i) returns the thread identifier of which i is executed from

Finally, we use the symbol H to denote the set of all execution histories.
The memory events of each H are related by order relations.

S. Liu, J. Bender, J. Palsberg 23:7

· The program order (po) is a partial order relation (po ⊆ H.E × H.E) specified by P . We
use the notation i1

po−−→ i2 to denote the pair of events ⟨i1, i2⟩ related by po and H.po to
denote the set of all pairs relates by po in H.

· The reads-from (rf) order is a partial order relation (rf ⊆ H.W × H.R). For each
read event i2, there exists a unique write event i1 such that H.val(i1) = H.val(i2) and
H.loc(i1) = H.loc(i2). We use the notation i1

rf−−→ i2 to denote the pair of events ⟨i1, i2⟩
related by rf and H.rf to denote the set of all pairs relates by rf in H.

· Model-Specific relations. There are sets of relations that are specifically defined by the
memory model. They are derived from the event attributes, po, and rf using the semantic
rules of the memory model. We will detail them in the next few sections. We use the
notation i1

R−−→ i2 to denote the pair of events ⟨i1, i2⟩ ∈ H.R.

We also use operations on relations: given relations R1 and R2, we use composition R1;R2
, union R1|R2, intersection R1 & R2, complement ~R1, transitive closure R+

1, and inversion R-1
1 .

We may present an execution history H as a graph. An execution graph consists of a set
of nodes labeled with unique identifiers, and a set of labeled edges. Each labeled node refers
to an executed memory access.

Lastly, we use the notation acyclic(R−−→) to denote that R is acyclic in the execution
history.

3.2 The JAM21 Model
In this section, we present the JAM21 model. The full definition of the relations in JAM21
can be found in Appendix A. We explain several excerpts of the formal model.

There are five available access modes in JAM21: Plain mode, Opaque mode, Release mode,
Acquire mode, and Volatile mode. The synchronization effect of the access modes are partially
ordered using ⊑ :

Plain ⊑ Opaque ⊑ {Release, Acquire} ⊑ Volatile.

3.2.1 Visibility
At the center of JAM21 is the notion of visibility orders (vo). The most basic form of visibility,
vo includes the reads-from (rf) relation. Intuitively, a read has certainly seen the effects of
the write it takes its value from. Otherwise, visibility comes from synchronization4. Both
Volatile (V) and Release(REL)-Acquire(ACQ), (RA as the union) accesses provide synchronization
and thus visibility. Note that Volatile accesses are also included in the set of accesses that are
considered Release-Acquire by the model. Further, vo can be derived from ra or svo orders,
which captures the synchronization effects of Release-Acquire memory events or fences, spush
or volint orders, which capture the synchronization effects of Volatile memory events or
fullFence()s. In addition, the pushto order is trace order (to) restricted to the domain
of spush and volint. Composing pushto with spush or volint emulates the cross-thread
total order among fullFence()s, which is also part of the vo order. Finally, po to the same
location is also included as part of the vo definition.

ra ≜ po ; [REL | V] | [ACQ | V] ; po

4 Here, we use the high-level term "synchronization" for any memory consistency guarantee among
instructions. We noticed that the usage of this term might differ outside of this paper. Therefore, we
try to avoid using this term ambiguously to avoid confusion.

ECOOP 2022

23:8 Compiling Volatile Correctly in Java

svo ≜ po ; [F & REL] ; po ; [W] | [R] ; po ; [F & ACQ] ; po

spush ≜ po ; [F & V] ; po

volint ≜ [V] ; po ; [V]

vvo ≜ rf | svo | ra | spush | volint | pushto ; (spush | volint)

vo ≜ vvo+ | po-loc

Note that the definition of volint has been corrected from JAM19 to ensure sequential
consistency for Volatile.

3.2.2 Coherence
The coherence order, co-jom, is an order among writes to the same location. Coherence
order edges can be derived using the vo order and the po order among memory accesses.

WWco(rel) ≜ {⟨i1, i2⟩ | ⟨i1, i2⟩ ∈ H.rel ∧ i1, i2 ∈ H.W ∧ H.loc(i1) = H.loc(i2) ∧ i1 ̸= i2}

coww ≜ WWco(vo)

cowr ≜ WWco(vo ; rf−1)

corw ≜ WWco(vo ; po)

corr ≜ [O | RA | V] ; WWco(rf ; po ; rf−1) ; [O | RA | V]

co-jom ≜ coww | cowr | corw | corr

Note that co-jom is different from the definition of co in other memory models such
as Power and x86-TSO. Instead of enumerating all possible total coherence order to check
the consistency of a given execution history, JAM21 derives coherence order co-jom among
memory events from their known relations. Therefore, co-jom is a partial order among
writes to the same location in JAM21. We use the notation i1

co-jom−−−−−→ i2 to denote the pair
of events ⟨i1, i2⟩ related by co-jom and H.co-jom to denote the set of all pairs relates by
co-jom in H. We use the simpler name co to denote co-jom when the context is clear.

In addition, different from JAM19, Plain mode reads to the same location ordered by po
can be reordered by compiler and therefore cannot be used to derive co-jom order.

3.2.3 Execution Consistency
Axiomatic models define program semantics as the set of allowed executions. We adopt the
same definition of candidate execution from [1].
▶ Definition 1 (Consistent Candidate Execution). Given a program P and a memory
model M , an execution history H is a M-consistent candidate execution of P if and
only if:

· H is a candidate execution of P (specified by the architecture of the programming
language of which P is written in).

· H is M-consistent.

We denote the set of all M -consistent candidate executions of P by HistoriesM (P).
We now have all the definitions needed to define execution consistency under JAM21.

▶ Definition 2 (JAM21-consistency). An execution history H is JAM21-consistent if
it is trace coherent and satisfies the following two requirements:

1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf−−−−−→)

S. Liu, J. Bender, J. Palsberg 23:9

2. Coherence.: co-jom is acyclic, acyclic(co-jom−−−−−→)

We say such an execution history H is allowed by JAM21. Otherwise, it is forbidden.
For the JAM21 model, we use HistoriesJAM21(P) to denote the set of all JAM21-

consistent execution histories of P .
JAM21 satisfies a set of properties such as the DRF-SC Theorem. We show the theorems

and the proofs in Appendix H and Appendix I.

3.2.4 Validation with Litmus Tests

The experimental validation of the JAM21 model includes two parts.
First, we implement the Java architecture in Herd7. Herd7 [1] was developed to simulate

program executions with user-defined memory models. An architecture in Herd7 provides
the parser for litmus tests written in the language corresponding to the architecture and an
operational semantics of the instructions that appear in litmus tests. Herd7 uses the parser
and the instruction semantics from the architecture to form an internal representation of the
input litmus test and generate the set of all possible executions. Then, Herd7 checks the
consistency of the executions using memory models written in the cat language. As of today,
several mainstream architectures, such as C/C++11 [6], x86 [15], ARM [2], and Power [14],
have been implemented and included in Herd7’s official repository. Unfortunately, Java is
not. JAM19 [3] validated its formalization by mapping memory events to other architectures’
events that exists in the Herd7 repository and run the litmus tests in the architecture’s
language. The mapping roughly captures part of the compilation scheme but it is neither
complete nor proven sound. For example, in its mapping to ARMv8, Volatile accesses are
ignored and not mapped to any memory event. Hence this approach is invalid and the results
cannot be trusted though they show intentions on how JAM19 was expected to behave.
Therefore, we extend the Herd7 tool suite with the Java architecture and translate the set
of litmus tests used for testing JAM19 to Java5. A detailed description of each supported
instruction is shown in Appendix K.1.

Second, we validate the JAM21 model using the Java translation of the set of litmus
tests that was originally used to validate JAM19 and compare their outcomes. The results
are mostly the same as the results from JAM19 except for three cases that are relevant
to the inconsistency issue discussed earlier in this paper because we wish to fix the issue
while keeping other parts of the model unchanged. The three exceptions reveal another
aspect of the change, accommodating both the leading fence convention and the trailing
fence convention, whereas JAM19 forced the compiler to choose a particular (problematic)
convention. Since the compiler is free to choose either convention, a full synchronisation is
only guaranteed to appear between a pair of Volatile accesses. In effect, certain executions
that was forbidden by JAM19 are allowed by JAM21 since it is no longer guaranteed that
Volatile writes are followed by a full synchronisation and Volatile reads are prepended with a
full synchronisation. In addition, we have added new litmus tests for showing the change
in the semantics of Volatile, volatile-non-sc.4 and volatile-non-sc.5. While JAM19 allows the
non-sequentially consistent behavior, JAM21 correctly forbids them. We further translated
the examples to Power using the problematic compilation scheme, volatile-non-sc.4.ppc and

5 Note that not all tests are translatable. For example, for the cases that test address dependencies, there
is no corresponding Java version since the notion of address dependency does not exist in Java. We
drop a small set of litmus tests due to this reason.

ECOOP 2022

23:10 Compiling Volatile Correctly in Java

volatile-non-sc.5.ppc, and the tests are indeed allowed by the Power memory model. Please
see Appendix K.2 for a detailed report.

4 Compilation Correctness to Power

In this section, we show that the revised compilation scheme for Power is correct with respect
to the Power memory model [14]. We use an intermediate model for the Java Access Modes
that is observationally equivalent to JAM21, which we call JAM ′

21. We include the detailed
definition of JAM ′

21 and the proofs for their observational equivalence to Appendix D.1
and its full definition in Appendix B. We use JAM ′

21 to prove that the revised compilation
scheme to Power is correct.

4.1 The Power Memory Model
We use the Power memory model defined in Herd7 [1], which consists of the following basic
order definitions (Please see Appendix C for the full semantics):

· po and rf follows the same definitions as in JAM21 (as described in Section. 3).
· co is the union of total orders among writes to the same location. Additionally, if i1 and

i2 are events on different threads and i1
co−−→ i2, then i1

coe−−−→ i2.
· ctrl is the control dependency between memory accesses.
· ppo is the set of preserved program orders. The detailed definition can be found in

Appendix C.
· chapo ≜ rfe | fre | coe | (fre ; rfe) | (coe ; rfe)
· com ≜ rf | fr | co
· po-loc is a subset of po that relates accesses to the same locations.
· rmw relates the read and the write access from the same RMW memory event.
· hb ≜ ppo | (sync | lwsync) | rfe
· propbase ≜ ((sync | lwsync) | (rfe ; (sync | lwsync))) ; hb∗

· prop ≜ propbase & (W ∗ W) | (chapo? ; propbase∗ ; sync ; hb∗)
· Additional order definitions can be found in Appendix C.

▶ Definition 3 (Power Consistency). An execution history H is Power-consistent if it
is trace coherent and satisfies the following six requirements:

1. SC-per-location: po-loc | com is acyclic.
2. Atomicity: rmw & (fre ; coe) is empty.
3. No-Thin-Air: hb is acyclic.
4. Propagation: (co | prop) is acyclic.
5. Observation: fre; prop; hb∗ is irreflexive.
6. SCXX: co | (po & (X ∗ X)) is acyclic (where X denotes atomic accesses)

We say such an execution history H is allowed by Power. Otherwise, it is forbidden.

4.2 Compilation Scheme
We use the compilation scheme in Fig. 4. Note that this is slightly different from the
compilation scheme found in OpenJDK HotSpot compiler in that each Opaque mode read is
translated to a load instruction followed by a conditional branch. This enables us to ensure
the No-Thin-Air property as it is not guaranteed in the Power memory model. The problem
of Out-of-Thin-Air in axiomatic models has been an active research area for a long time and

S. Liu, J. Bender, J. Palsberg 23:11

getOpaque()⇝ lwz ; cmp ; bc
setOpaque()⇝ stw

getAcquire()⇝ lwz ; lwsync
setRelease()⇝ lwsync ; stw

getVolatile()⇝ hwsync ; lwz ; lwsync
(Or getVolatile()⇝ lwz ; hwsync for trailing fence convention)

setVolatile()⇝ hwsync ; stw
(Or setVolatile()⇝ lwsync ; stw ; hwsync for trailing fence convention)

AcquireFence()⇝ lwsync
ReleaseFence()⇝ lwsync

fullFence()⇝ hwsync
getAndAdd()⇝ hwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync

(Or getAndAdd()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; hwsync for trailing fence convention)
getAndAddAcquire()⇝ _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync
getAndAddRelease()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1

Figure 4 Compilation to Power

there exists various ways to use weaker compilation schemes while still ruling out thin-air
reads. However, it is out of the scope of this paper and here we adopt the stronger scheme for
Opaque mode to simplify the proofs. Additionally, we fix the compilation scheme for Volatile
as suggested in Section 2. Note that both leading fence and trailing fence conventions ensure
a hwsync instruction is inserted between each pair of Volatile mode accesses as long as they
are used consistently (use the same convention for Volatile writes and reads). Therefore, the
proof for the trailing fence convention can be carried out in a very similar way as the proof
for the leading fence convention.

We start our proof by defining a CompilesTo relation over execution histories that relates
source level executions to target level executions. Intuitively, the process of compilation can
be seen as a transformation function on executions from source level to target level. With
the CompilesTo relation, we can characterize a subset of target level executions that are
constructed particularly through the compilation (following a given compilation scheme)
from the source level. Note that at this step we do not check whether the resulting execution
is consistent under the target level memory model, since the consistency of an execution is
checked after the execution is constructed in axiomatic memory models.
▶ Definition 4 (Compilation of an Execution). We define the "CompilesTo" relation
;⊆ H×H for the compilation from Java to Power as the following: Given a Java program
Psrc, let Ptgt be the target-level program compiled from Psrc using the compilation scheme
in Fig. 4 (using the leading fence convention). Let Hsrc be a candidate execution history of
Psrc and Htgt be a candidate execution history of Ptgt. We say Hsrc ; Htgt if:

· Htgt.IW = Hsrc.IW
· Htgt.FW = Hsrc.FW
· Htgt.E = Hsrc.E
· Htgt.rf = Hsrc.rf
· Htgt.po = Hsrc.po
· Htgt.co ⊆ Hsrc.to
· If i1 ∈ Hsrc.E, irmw ∈ Hsrc.RMW and irmw

po−−→ i1, then irmw
ctrl−−−−→ i1 in Htgt

· If i⊒O
R ∈ Hsrc.R, i1 ∈ Hsrc.E and i⊒O

R
po−−→ i1, then iR

ctrl−−−−→ i1 in Htgt

· If i1, i2 ∈ Hsrc.E and i1
push−−−−→ i2, then i1

sync−−−−→ i2 for i1, i2 ∈ Htgt.E

ECOOP 2022

23:12 Compiling Volatile Correctly in Java

· If i1, i2 ∈ Hsrc.E and i1
ra−−→ i2, then i1

lwsync−−−−−→ i2 for i1, i2 ∈ Htgt.E

Once we have the source level and target level execution histories, we use the memory
model to check for consistency. A correct compilation, intuitively, should not introduce any
new program behavior. In this context, it means there should not be any execution Hsrc that
is forbidden by the source level memory model being related (by the "CompilesTo" relation)
with a Htgt that is allowed by the target level memory model. That is, if Htgt is consistent
under the target level memory model, then Hsrc should also be consistent under source level
memory model. Formally, we have the following definition (recall that we use HistoriesM (P)
to denote the set of consistent execution histories if a program P under a memory model M).
▶ Definition 5 (Compilation Correctness). Let Psrc be a source program and S be a
memory model that supports the source language, Ptgt be the target program compiled from
Psrc using a compilation scheme and T be a memory model that supports the target language.
We say a compiler that compiles Psrc to Ptgt is correct if for all Htgt ∈ HistoriesT (Ptgt)
there exists a Hsrc ∈ HistoriesS(Psrc) such that Hsrc ; Htgt.

4.3 Proof of Compilation Correctness
We leverage an intermediate memory model, JAM ′

21, to prove the compilation correctness to
Power. While the complete definition of JAM ′

21 can be found in Appendix D, it is important
to note that JAM ′

21 is observationally equivalent to JAM21, which means they allow the same
visible program behaviors given the same program. Intuitively, each consistent execution
under JAM21 has a corresponding consistent execution under JAM ′

21 with the same set
of events and the same observable value on each event. Formally, we give the following
definitions for observational equivalence.
▶ Definition 6 (Observational Equivalence of Execution Histories). Given a pro-
gram P , let H and H ′ be two execution histories of P . We say H and H ′ are observationally
equivalent if:

· H.IW = H ′.IW
· H.FW = H ′.FW
· H.E = H ′.E
· H.po = H ′.po
· H.rf = H ′.rf
· ∀i ∈ H.E, H.AccessMode(i) = H ′.AccessMode(i)

▶ Definition 7 (Observational Equivalence of Memory Models). Given a program
P , let M1 and M2 be two memory models that support the architecture of the programming
language that P is written in. Let HistoriesM1(P) be the set of all M1-consistent candidate
executions of P ; let HistoriesM2(P) be the set of all M2-consistent candidate executions of
P . We say M1 and M2 are observationally equivalent if:

· (⇒) For all H1 ∈ HistoriesM1(P), there exists H2 ∈ HistoriesM2(P) such that H1 is
observationally equivalent to H2.

· (⇐) For all H2 ∈ HistoriesM2(P), there exists H1 ∈ HistoriesM1(P) such that H2 is
observationally equivalent to H1.

Then we prove the compilation correctness from JAM ′
21 to Power.

▶ Lemma 1 (JAM ′
21 to Power). Let Psrc be a Java program, Ptgt be the Power program

compiled from Psrc using the compilation scheme in Fig. 4 (with the leading fence convention).

S. Liu, J. Bender, J. Palsberg 23:13

For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM ′(Psrc) such that
Hsrc ; Htgt.

Please see Appendix D for the proof.
Finally, we associate JAM21 with JAM ′

21 through the notion of observational equivalence
and prove the compilation correctness from JAM21 to Power.

▶ Theorem 1 (Compilation Correctness to Power (Leading Fence Convention)).
The compilation from Java to Power following the compilation scheme in Fig. 4 (using the
leading fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power
program compiled from Psrc using the compilation scheme in Fig. 4 (using the leading fence
convention). For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc)
such that Hsrc ; Htgt.

Please see Appendix D for the proof.

▶ Corollary 1 (Compilation Correctness to Power (Trailing Fence Conven-
tion)). The compilation from Java to Power following the compilation scheme in Fig. 4 (using
the trailing fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power
program compiled from Psrc using the compilation scheme in Fig. 4 (using the trailing fence
convention). For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc)
such that Hsrc ; Htgt.

Please see Appendix D for the proof.

5 Compiler Transformations

One important aspect of compilers is the program transformations that they apply to
the program. A correct compiler transformation should not introduce any new program
behavior. While this is relatively simple for sequential programs, it can yield subtle issues
when applying the same transformations to concurrent programs. A memory model’s
task is then to accommodate a set of common program transformations while still provide
intuitive synchronization guarantees to the programmers. In Section 4 we show that Java
and C/C++11 can use the same compilation scheme to Power (and x86, see Appendix F).
However, Java has a stronger semantics for Volatile comparing to seq_cst in C/C++11 and
can adopt only a strict subset of the transformations that are valid for C/C++11.

In this section, we use the set of compiler transformations detailed by [6] and compare their
soundness in Java with C/C++11. We provide formal proofs for the sound transformations
and counter-examples for invalid transformations. We conclude this section by discussing
the implications of our results.

To prove a transformation is valid, intuitively, we show that there does not exist a Hsrc

of Psrc such that it is forbidden by JAM21 but the corresponding Htgt of Ptgt is allowed.

▶ Definition 8 (Valid Program Transformation). Let Psrc be a Java program which
has a set of candidate executions, Histories(Psrc). Let T : H → H be a program transfor-
mation and Htgt = T (Hsrc) for each candidate execution Hsrc of Psrc. Then we say T is
valid under JAM21 if and only if for each Htgt, if Htgt is JAM21-consistent, then Hsrc is
also JAM21-consistent.

The results for Java comparing them C/C++11 [6] are summarized in Fig. 5.

ECOOP 2022

23:14 Compiling Volatile Correctly in Java

Transformation C/C++11 Java
Strengthening [Sec. 5.1] ✓ ✓

Sequentialisation [Sec. 5.2] ✓ ✓

Reordering [Sec. 5.3] See Fig. 6
Merging [Sec. 5.4] See Fig. 7
Register Promotion [Sec. 5.5] ✓ For locations that does not

have Volatile access

Figure 5 Compiler Transformations in C/C++11 and Java

5.1 Strengthening
Strengthening transforms the access mode of accesses to stronger access modes. It is supported
by JAM21 due to the monotonicity property of the memory model. The formal theorem is
the following:
▶ Theorem 2 (Strengthening). Let Htgt an execution of Ptgt, which is obtained from
applying Strengthening to a program Psrc. There exists an execution Hsrc of Psrc such that:

· Hsrc.E = Htgt.E
· Hsrc.po = Htgt.po
· Hsrc.rf = Htgt.rf
· ∀i ∈ Hsrc.E, Hsrc.AccessMode(i) ⊑ Htgt.AccessMode(i)

If Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Proof. By Monotonicity of JAM21, all the constraints in Hsrc are preserved in the strength-
ened execution Htgt. Therefore, if Htgt is JAM21-consistent, so is Hsrc. ◀

5.2 Sequentialisation
Sequentialisation transforms two concurrent accesses into accesses in a single sequential
process. It is natually supported by JAM21 because sequentialisation does not remove any
synchronization from the program.
▶ Theorem 3 (Sequentialisation). Let Psrc be a Java program and Ptgt be a Java
program obtained by performing a sequentialisation operation on a pair of accesses a and b.
Let Htgt be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such that

· Hsrc.po ∪ {⟨a, b⟩} = Htgt.po where ⟨a, b⟩ /∈ Hsrc.po and ⟨b, a⟩ /∈ Hsrc.po
· Hsrc.rf = Htgt.rf
· Hsrc.E = Htgt.E
· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW
· ∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)

and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Proof. Assume towards contradiction that Hsrc is not JAM21-consistent. Then there are
two cases: either there is a (po | rf)+ cycle or a co cycle in Hsrc. Whether or not a and b

are included in this cycle, adding a po edge between a and b cannot eliminate this cycle
(although it might introduces new cycles). Therefore, Htgt is also not JAM21-consistent,
contradicting to our assumption. ◀

S. Liu, J. Bender, J. Palsberg 23:15

Rm2
y Wm2

y RMWm2
y Fm2

Rm1
x m1 ⊑ Opaque m1, m2 ⊑

Opaque ∧
(m1 = Plain ∨
m2 = Plain)

m1 = Plain ∧
m2 ⊑ Acquire

(m1 ⊑ Opaque ∧ m2 =
Release ∧ ∀i, Fm2 po−−→ i ⇒ i /∈
H.W) ∨ (m1 = Acquire ∧ m2 =
Acquire) ∨ (m1 = Acquire ∧
m2 = Release)

Wm1
x m1 ̸= Volatile∨

m2 ̸= Volatile
m2 ⊑ Opaque m2 ⊑ Acquire (m2 = Acquire) ∨ (m2 =

Release ∧ ∀i, Fm2 po−−→ i ⇒
i /∈ H.W) ∨ (m2 = Release ∧
∀i, Fm2 po−−→ i ∧ i ∈ H.W ⇒
AccessMode(i) = Release)

RMWm1
x m1 ⊑ Release m1 ⊑ Release∧

m2 = Plain
- (m1 ⊒ Acquire ∧ m2 =

Acquire) ∨ (m2 = Release ∧
∀i, Fm2 po−−→ i ⇒ (i ∈ H.R ∨
(i ∈ H.W ∧ AccessMode(i) =
Release)))

Fm1 (m1 =
Release) ∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

m1 = Release∧
m2 ⊒ Release∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

m1 = Release∧
m2 ⊒ Release∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

(m1 = Release ∧ m2 =
Acquire) ∨ (m1 = Acquire ∧
∀i, i po−−→ Fm1 ⇒ i /∈ H.R) ∨
(m2 = Release ∧ ∀i, Fm2 po−−→
i ⇒ i /∈ H.W)

Figure 6 Allowed Deordering Pairs in JAM21

5.3 Reordering
The operation of reordering can be seen as composing deordering with sequentialisation. Since
we know that sequentialisation is sound in JAM21, we only need to show that deordering is
sound in order to show reordering is sound in JAM21.

5.3.0.1 Deordering

Deordering is a transformation that turns a pair of accesses related by a po relation into a
pair of concurrent accesses. In effect, it removes an po edge in the execution graph.

First, we adopt the same definition of adjacent events from [6]:
▶ Definition 9 (Adjacent Events). Two events a and b are adjacent in a partial order
R if for all c, we have:

· c R−−→ a ⇒ c R−−→ b

· b R−−→ c ⇒ a R−−→ c

For Java, the table of allowed reordering two adjacent events (with each row as the first
event and column as the second event) is shown in Fig. 6 (some of the cases are different
from C11 [6] and we have marked them in red). Intuitively, the sound deorderable pairs are
ordered by the po edges that does not impose any synchronization in the program. Therefore,
deordering (removing the po edge) does not introduce new program behavior.

To prove that JAM21 supports the reordering shown in this table, we need to prove each
cell shown in the table is valid for JAM21.
▶ Theorem 4 (Deordering). Let Psrc be a Java program and Ptgt be a Java program
obtained by performing a deordering operation on a pair of accesses a and b according to
Fig. 6. Let Htgt be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such
that

ECOOP 2022

23:16 Compiling Volatile Correctly in Java

Name C/C++11 Java

Read-read Merging Rm; Rm ⇝ Rm Rm⊑Acq; Rm⊑Acq ⇝ Rm

Write-write Merging Wm; Wm ⇝ Wm Wm⊑Rel; Wm⊑Rel ⇝ Wm

Write/RMW-read Merging Wm; Racq ⇝ Wm Wm; Rm⊑Opq ⇝ Wm

Wsc; Rsc ⇝ Wsc ✗

RMWm; Rmr⊑m ⇝ RMWm RMWm; Rm⊑Opq ⇝ RMWm

Write-RMW Merging Wmw⊑m; RMWm ⇝ Wmw Wmw⊑Rel; RMWm<Vol ⇝ Wmw

RMW-RMW Merging RMWm; RMWm ⇝ RMWm RMWm<Vol; RMWm<Vol ⇝ RMWm

Fence-fence Merging Fm; Fm ⇝ Fm Fm; Fm ⇝ Fm

Figure 7 Mergable Pairs in C/C++11 [6] and Java

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} where a and b are po-adjacent
· Hsrc.rf = Htgt.rf
· Hsrc.E = Htgt.E
· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW
· ∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)

and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.
Please see Appendix G for the proof.
Reordering, as mentioned previously, can be decomposed into two steps: deordering and

sequentialisation. Since we have already shown the soundness of the two transformations,
the soundness of reordering follows naturally.
▶ Corollary 2 (Reordering). JAM21 supports the reordering transformation for pairs
of adjacent accesses shown in Fig. 6.

5.4 Merging
Merging transforms two adjacent accesses into one single equivalent access to reduce the
number of memory accesses in the program. We have grouped all types of merging transfor-
mations appeared in C/C++11 [6] here in one section. A summarized result of mergable
pairs comparing with C/C++11 can be found in Fig. 7. The results are mostly similar except
for Volatile. Many merging transformation are invalid for Volatile because they remove the
cross-thread synchronization of Volatile.

5.4.1 Read-Read Merging
Read-read merging is sometimes done when the compiler is optimizing redundant loads in
the same thread. When we are encountering two consecutive reads to the same location,
the first read is unchanged but the second read becomes a local read without accessing the
memory.

S. Liu, J. Bender, J. Palsberg 23:17

Let a′ and b be two adjacent read accesses reading from the same write access a. a rf−−→ a′

and a rf−−→ b, and a′ po−−→ b. Assuming AccessMode(a′) = AccessMode(b), then

· ∀i, a′ po−−→ i ⇒ b po−−→ i

· ∀i, a′ ra−−→ i ⇒ b ra−−→ i

· ∀i, a′ push−−−−→ i ⇒ b push−−−−→ i

· ∀j, j po−−→ b ⇒ j po−−→ a′

For executions, this corresponds to the following transformation in the execution graph:
since the value of r1 and r2 are guaranteed to have the same value in Ptgt, we know
that this corresponds to the execution of Psrc where the two read accesses read from the
same write access. Then we want to show that, if Htgt is JAM21-consistent, Hsrc is also
JAM21-consistent.
▶ Theorem 5 (Read-Read Merging). Let Htgt be an JAM21-consistent execution. Let
a ∈ Htgt.R\RMW and let a′ ∈ Htgt.E such that a rf−−→ a′. Let b /∈ Htgt.E. There exists a
Hsrc such that:

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a′, b⟩}
· Hsrc.E = Htgt.E ∪ {b}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· b ∈ Hsrc.R
· Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ⊑ Acquire

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.
Note that JAM21 does not allow read-read merging if the two read accesses are both

Volatile mode reads. We provide an example of this in Appendix G.

5.4.2 Write-Write Merging
The write-write merge transformation refers to the program transformation that merges
two consecutive write operations into one by removing the former one. JAM21 support
write-write merge when the access modes of the two writes are the same and they are not
Volatile mode accesses.

Let a and b be the two adjacent writes such that a po−−→ b. We once again have the
properties:

· ∀i, i po−−→ a ⇒ i po−−→ b

· ∀j, b po−−→ j ⇒ a po−−→ j

· ∀i, i ra−−→ a ⇒ i ra−−→ b

We have the following theorem.
▶ Theorem 6 (Write-Write Merging). Let Htgt be an JAM21-consistent execution. Let
b ∈ Htgt.W\RMW and let a /∈ Htgt.E and loc(a) = loc(b) ∧ ∀i ∈ Htgt.W, loc(i) = loc(b) ⇒
val(a) ̸= val(i). There exists a Hsrc such that:

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf

ECOOP 2022

23:18 Compiling Volatile Correctly in Java

· Hsrc.E = Htgt.E ∪ {a}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· a ∈ Hsrc.W

· Hsrc.AccessMode(a) = Hsrc.AccessMode(b) ⊑ Release

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.
Note that write-write merging is not valid for Volatile mode writes. We provide an

example of this in Appendix G.

5.4.3 Write/RMW-read Merging
The Write/RMW-read merging refers to the program transformation that merges a write/RMW
and a read into a single write/RMW and a local access.

Similarly, the transformation with an RMW operation and a read operation optimizes
the latter read operation to read locally and in effect removes a memory load operation in
the execution graph.

JAM21 only support this transformation when the read operation is (or is weaker than)
Opaque mode which is different from RC11 [6]’s result for C/C++11. We provide a counter-
example in Appendix G to show that write/RMW-read merging is invalid when the read is
(or is stronger than) Acquire mode.
▶ Theorem 7 (Write/RMW-Read Merging). Let Htgt be a JAM21-consistent execution.
Let a ∈ Htgt.W and b /∈ Htgt.E. There exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {b}
· b ∈ Hsrc.R
· Hsrc.loc(b) = Hsrc.loc(a)
· Hsrc.val(b) = Hsrc.val(a)
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.AccessMode(b) ⊑ Opaque

Please see Appendix G for the proof.

5.4.4 Write-RMW Merging
The write-RMW merging refers to the program transformation that merges a write and a
consecutive RMW operation into a write with the value of the RMW. For example, if we
have the following pattern in a program:

x = 1;
x.getAndSet(1,2);

It can be tranformed to:

x = 2;

S. Liu, J. Bender, J. Palsberg 23:19

Similar to write-write merging, JAM21 supports write-RMW merging when the access
mode of the write is {Opaque, Release} and the access mode of the RMW is {Acquire, Release}.
▶ Theorem 8 (Write-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
b ∈ Htgt.W\Htgt.RMW, a /∈ Htgt.E and v ∈ Val. There exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {a}
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.AccessMode(a) ∈ {Opaque, Release}
· Hsrc.AccessMode(b) ∈ {Acquire, Release}
· Hsrc.loc(b) = Hsrc.loc(a)
· b ∈ Hsrc.RMW
· Hsrc.val(b) = (Hsrc.val(a), v)
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.

5.4.5 RMW-RMW Merging
The RMW-RMW merging transformation refers to the program transformation that merges
two consecutive RMW operations into one such that it has the first RMW’s (expected) read
value and the second RMW’s write value. For example, if we have the following pattern in a
program:

x.getandSet(1,2);
x.getandSet(2,3);

then it might be transformed into:

x.getAndSet(1,3);

The RMW-RMW merging transformation is essentially the same as write-write merging
and read-read merging described previously. Therefore, the set of constraints on valid access
modes for merging is the intersection of the two. That is, two RMWs are mergeable if they are
both Acquire mode or Release mode. For the counter-examples showing this transformation
is invalid for Volatile accesses, please see the examples for write-write and read-read merging.
▶ Theorem 9 (RMW-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
x be a memory location and a ∈ Htgt.E with Htgt.val(a) = (vr, vw), Htgt.loc(a) = x, and
Htgt.AccessMode(a) ∈ {Release, Acquire}. Let b /∈ Htgt.E, there exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {b}
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.val(a) = (vr, v)
· Hsrc.val(b) = (v, vw)
· Hsrc.loc(b) = x

· Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ∈ {Release, Acquire}
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i to−−→ a} ∪ {⟨b, j⟩ | a to−−→ j}

ECOOP 2022

23:20 Compiling Volatile Correctly in Java

· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.

5.4.6 Fence-fence Merging
The Fence-fence merging refers to the program transformation that merges two consecutive
fences of the same access mode into one. For example, if we have:

VarHandle.fullFence();
VarHandle.fullFence();

then it can be optimized to:

VarHandle.fullFence();

Since JAM21 is fence-based such that each fence is converted into an edge between
memory accesses, this is trivially supported since the execution graph before and after the
transformation is exactly the same.

5.5 Register Promotion for Non-shared Variable
Register Promotion promotes memory accesses of a non-shared memory location to local
registers. It has the effect of removing memory accesses for thread-local variables. JAM21
only supports register promotion for variables without any Volatile accesses in the program.
For non-Volatile accesses, since the variable is not shared across threads, it is safe to remove
them without worrying about removing synchronization from the program. In contrast,
Volatile accesses impose cross-thread synchronizations with Volatile accesses for other variables,
so removing such accesses can potentially remove important synchronization in the program
and introduce new behaviors that were previously forbidden by the memory model. We
provide a counter-example in this section showing that we cannot promote Volatile accesses
to local register accesses even if the location is only accessed by one thread.

Suppose all accesses to a memory location are in the same thread, the transformation
can be seen as two steps:

1. Weakening the accesses to Plain mode accesses
2. Removing the Plain mode accesses

▶ Theorem 10 (Weakening for non-shared variable). Let Htgt be a JAM21-consistent
execution such that, for all accesses i and j in Htgt.E, loc(i) = loc(j) = x ⇒ Tid(i) = Tid(j)
for some memory location x. In addition, ∀i ∈ Htgt.E, loc(i) = x ⇒ AccessMode(i) = Plain.
There exists an execution Hsrc such that:

· Hsrc.E = Htgt.E
· Hsrc.po = Htgt.po
· Hsrc.rf = Htgt.rf
· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW
· ∀i ∈ Hsrc.E, loc(i) = x ⇒ AccessMode(i) ∈ {Release, Acquire}

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.

S. Liu, J. Bender, J. Palsberg 23:21

▶ Theorem 11 (Removing Plain accesses for non-shared variable). Let Htgt be a
JAM21-consistent execution. Let x be a memory location and for all i ∈ Htgt.E such that
loc(i) = x, Tid(i) = t for some t. Let a /∈ Htgt.E. There is a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {a}
· Hsrc.loc(a) = x

· Hsrc.AccessMode(a) = Plain
· Hsrc.po ⊃ Htgt.po
· for all i ∈ Hsrc.E such that Hsrc.loc(i) = x, i po−−→ a or a po−−→ i

· Hsrc.rf = Htgt.rf if a ∈ Hsrc.W\RMW , otherwise, Hsrc.rf = Htgt.rf ∪ {⟨i, a⟩} such
that (i ∈ Hsrc.W) ∧ (loc(i) = x) ∧ (i po−−→ a) ∧ (∀j ∈ Hsrc.E, (loc(j) = x) ∧ (j po−−→ a) ⇒
(j po−−→ i)).

· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.
Please see Appendix G for the proof.

5.5.0.1 Counter Example

We now show a counter example for invalid register promotion on locations with Volatile
accesses. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);
Z.setVolatile(1);
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

An execution with the annotated values in this program is not allowed by JAM21. The
execution graph before the transformation is shown in Fig. 8. First note that the Volatile
access on z also has Release semantics due to the monotonicity of access modes, which yields
the ra edge in Thread 2. The total order among push edges gives use two cases:

1. Wz = 1 vvo−−−→ Wx = 1. Since Wx = 2 ra−−→ Wz = 1 and ra ⊆ vvo and vvo+ ⊆ vo, we have
Wx = 2 vo−−→ Wx = 1, which contradict with the co edge established by the observation
from Thread 0.

2. Wy = 2 vvo−−−→ Wy = 1. This contradict with the co edge established by the observation
from Thread 1.

In both cases there is a contradiction (a co cycle). Therefore, this execution is forbidden by
JAM21.

In this example, the memory location z is only accessed by Thread 2. It maybe tempting
to promote z to a local register on Thread 2 to reduce the number of memory instructions,
which yields the following program:

ECOOP 2022

23:22 Compiling Volatile Correctly in Java

Figure 8 Before Register Promotion on Volatile access (Forbidden)

Figure 9 After Register Promotion on Volatile access (Allowed)

Thread0 {
int r1 = X.getOpaque();
int r2 = X.getOpaque();

}

Thread1 {
int r3 = Y.getOpaque();
int r4 = Y.getOpaque();

}

Thread2 {
X.setOpaque(2);
int z = 1
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph after the transformation is shown in Fig. 9.
The annotated program behavior becomes allowed by JAM21 after the transformation.

As the execution graph shows, since Volatile accesses also have cross-thread synchronization
effect, we cannot simply weaken it to a Plain access without introducing new program
behaviors.

5.6 Why are many transformations invalid for Volatile?
As we have shown, many local transformations are invalid for Volatile accesses under JAM21.
This is not a surprise and is intended to provide programmers a more intuitive semantics for
Volatile accesses.

First, as we have confirmed with the author of [9], Java’s Access Modes intend equivalent
semantics for Volatile mode and fullFence(). In this way, the programmers can easily
understand the semantics of both once they understand fullFence(). To accurately capture
this intention, JAM21 used a fence-based approach with push order to model Volatile mode.
As we described in Section 3, fullFence() in Java has cross-thread synchronization effects.
As a result, any local program transformation that removes a Volatile access from the
execution graph may also remove its cross-thread synchronization, and might introduce new

S. Liu, J. Bender, J. Palsberg 23:23

program behavior after the transformation. Therefore, those transformations on Volatile
accesses are mostly not allowed by JAM21. On the other hand, the sc fence in C/C++11 [6]
has slightly stronger synchronization effect than sc accesses so that they can be used to
restore sequential consistency when inserted between every pair of accesses. Some of the
transformations are allowed to apply to sc accesses but not to the fence version of the
program.

In addition, restricting the set of possible transformations that is allowed to apply to
Volatile variables can keep the coding process simple for programmers. From the programmers’
perspective, one of the biggest challenges of developing and debugging concurrent programs
comes from the compiler transformations that introduces surprising program behaviors that
are not observable under sequential consistency. Therefore, restricting the set of possible
transformations on Volatile accesses can restrict the set of surprising program behaviors
that can happen when using Volatile mode, making the development process simpler. From
this perspective, JAM21 provides more synchronization guarantees for Volatile mode than
C/C++11 for sc mode atomic accesses.

Lastly, as we have confirmed with the author of [9], the current implementation of
OpenJDK JVM does not apply those transformations on Volatile accesses.

6 Performance Implications

At the time of writing, the compiler bug [18] has been reported but still not resolved. The
main argument against fixing the bug by inserting the missing fence instruction is that it
may slow down the performance significantly. In this section, we argue that this is not the
case.

The reason we only translated our volatile-non-sc example to Power instructions is
that we only expect changes in the implementation of compilers targeting Power architectures.
There is no need to change the Java compilers for x86 [15] and ARMv8 [13] all thanks to a
property called write atomicity. Write atomicity, or multicopy atomicity, ensures that, when
a write issued by a thread becomes observable by any other thread, it is observable by all
other threads in the system. The issue that we demonstrate in this paper is caused by a
write operation becoming visible to some threads before some other threads. Therefore, this
violation of sequential consistency may only be observed when compiling to non-multicopy
atomic architectures. If the underlying architecture ensures multicopy atomicity, then we
can be sure that all writes are committed in a broadcast style and Release-Acquire semantics
is sufficient. Since x86 [15] and ARMv8 [13] are multicopy atomic, we do not expect the
incorrect program behavior to appear on those architectures. Therefore, no change is needed
in compilers targeting multicopy-atomic architectures. In fact, we give a correctness proof
for x86 in Appendix F to concretely show that the current compilation scheme to x86 is
correct with respect to the x86-TSO memory model. Furthermore, the fence instruction
that compilers use to compile to ARMv7 is the DMB SY instruction [8], which captures the
same effects of a fullFence(). The only change that needs to be made is when compiling
to Power instructions. This change might slow down some programs. However, relative to
all other major factors that affect the performance of Java programs, we expect the impact
by this change in compilers to be small.

Furthermore, symmetric to "leading fence" scheme, the "trailing fence" scheme is also
valid. A correct compiler may choose to either of the schemes. Usually one may wish to
choose the "trailing fence" scheme for better performance. In this case, comparing to the
original compilation scheme, the fix only changes the compilation scheme for each Volatile

ECOOP 2022

23:24 Compiling Volatile Correctly in Java

read:

1. Remove the hwsync in front of the lwz instruction
2. Change the lwsync following the lwz instruction to hwsync

It is easy to see that this fix only requires, in effect, moving the hwsync instructions that
were originally inserted before the lwz instruction, but does not add more. In addition, it
removes the lwsync instructions. Therefore, we do not expect this change to the compilation
scheme to have much performance impact as argued in the discussions in the bug report [18].

On the other hand, the impact of this change for compiler optimizations is unclear. That
is, whether this revised compilation scheme disables some of the compiler optimizations
is still a question. However, since C/C++11 compilers has long adopted this compilation
scheme and performance has always been the first priority in their implementations, the
possibility of disabling optimisations is unlikely. We leave a detailed empirical study for
future work.

7 Related Work

7.1 Sequential Consistency Issue in C/C++11
A similar but different issue in C/C++11 memory model for atomic operations with sequen-
tially consistent memory order was pointed out by Manerkar, et al. [11] and Lahav, et al. [6].
In particular, when using the "trailing fence" convention for compiling to Power and ARMv7
on GCC, the intended sequentially consistent semantics for certain atomic accesses can be
lost due to the different placement of fences in the programs. In other words, the previous
C/C++11 memory model was not able to support the two existing compilation schemes on
GCC. On the other hand, JAM19 did not have the same problem. Since JAM19 defined the
semantics of Volatile mode in terms of push orders, which emulates the effect of a full fence,
it already supports and aligned with the existing compilation scheme found on OpenJDK
JVMs.

The problem, however, was that the existing compilation scheme does not give sufficient
synchronization to some programs with all accesses marked as Volatile. Since JAM19 models
the problematic compilation scheme, it is necessary to repair the problem for both the
compiler and the formal model.

7.2 Using Volatile to Restore Sequential Consistency in Java
Due to the complexity of the original Java Memory Model (JMM) [12], a class of bugs
caused by missing “volatile” annotations on certain shared variables, called missing-
annotation bugs, is found across real-world Java applications [10]. Aiming to improve the
safety guarantees of the Java language, volatile-by-default JVM was proposed and developed
by [10] to advocate the idea that variables should have volatile semantics by default and
relaxed semantics by choice. Following their idea, the correctness of volatile (or Volatile mode,
as they are equivalent) semantics become especially important. After all, if we cannot restore
sequential consistency by annotating every variable as volatile (or use Volatile mode for
every access), then volatile-by-default JVM would not be able to ensure intuitive program
behaviors either. As of today, we are not aware of any volatile-by-default JVM for versions
of Java after JDK9. Thus, we suggest that researchers carefully ensure the correctness of
the volatile (or Volatile mode) implementations when implementing such JVM for Java
versions after JDK9.

S. Liu, J. Bender, J. Palsberg 23:25

7.3 Memory Fairness and Compiler Transformations
Recently a declarative definition of memory fairness was proposed for axiomatic relaxed
memory models [5]. As an improvement to the existing definition of thread fairness, the
declarative memory fairness property can be easily integrated into axiomatic models with the
No-Thin-Air restriction and can be used to prove the termination of concurrent algorithms.
We noticed that the original JAM model [3] was published before this definition was proposed
and therefore did not make any assertions regarding memory fairness. We leave it as our
future work to verify whether memory fairness preserves the correctness of the compiler
transformations and the compilation schemes.

8 Conclusion

In this paper, we have demonstrated that Java can use a compilation scheme that is similar to
C/C++11. On the other hand, one should not simply compile Java’s Access Modes the same
way as C/C++11 compiles atomic memory orders since the formal memory models supports
different compiler optimizations. In the future, we hope the bug can be resolved soon and
the examples in this paper can be added to the Java Concurrency Stress Tests jcstress [17]
tool suite to aid in maintaining the correctness of the OpenJDK HotSpot implementations.

References
1 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2), July
2014. doi:10.1145/2627752.

2 ARM ARM. Architecture reference manual-armv8, for armv8-a architecture profile. ARM
Limited, Dec, 2017.

3 John Bender and Jens Palsberg. A formalization of java’s concurrent access modes. Proc.
ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360568.

4 Peter Sewell Jaroslav Sevcik. C/c++11 mappings to processors. Technical report, University of
Cambridge, 10 2016. URL: https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.

5 Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis.
Making weak memory models fair. arXiv preprint arXiv:2012.01067, 2020.

6 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in c/c++11. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, page 618–632, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3062341.3062352.

7 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., 28(9):690–691, September 1979. doi:10.1109/TC.1979.
1675439.

8 Doug Lea. The jsr-133 cookbook for compiler writers. http://gee.cs.oswego.edu/dl/jmm/
cookbook.html, 2011. Last modified: Tue Mar 22 07:11:36 2011.

9 Doug Lea. Using jdk 9 memory order modes. http://gee.cs.oswego.edu/dl/html/j9mm.
html, 2018. Last Updated: Fri Nov 16 08:46:48 2018.

10 Lun Liu, Todd Millstein, and Madanlal Musuvathi. A volatile-by-default jvm for server
applications. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:10.1145/3133873.

11 Yatin A Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
Counterexamples and proof loophole for the c/c++ to power and armv7 trailing-sync compiler
mappings. arXiv preprint arXiv:1611.01507, 2016.

12 Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. SIGPLAN
Not., 40(1):378–391, January 2005. doi:10.1145/1047659.1040336.

ECOOP 2022

https://doi.org/10.1145/2627752
https://doi.org/10.1145/3360568
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://doi.org/10.1145/3133873
https://doi.org/10.1145/1047659.1040336

23:26 Compiling Volatile Correctly in Java

13 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
Simplifying arm concurrency: Multicopy-atomic axiomatic and operational models for armv8.
Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158107.

14 Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding
power multiprocessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, page 175–186, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1993498.1993520.

15 Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
X86-tso: A rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7):89–97, July 2010. doi:10.1145/1785414.1785443.

16 Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that
share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, April 1988. URL: http:
//doi.acm.org/10.1145/42190.42277, doi:10.1145/42190.42277.

17 Aleksey Shipilev. jcstress - the java concurrency stress tests. https://wiki.openjdk.java.
net/display/CodeTools/jcstress, 2017. Last Updated: Wed Dec 05 13:55 2018.

18 Aleksey Shipilev. [JDK-8262877] PPC sequential consistency problem: volatile stores are too
weak. Technical report, OpenJDK Bug System, 03 2021. URL: https://bugs.openjdk.java.
net/browse/JDK-8262877.

19 Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan,
Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo. Repairing and mechanising the
javascript relaxed memory model. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, page 346–361, New York,
NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3385412.3385973.

https://doi.org/10.1145/3158107
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/42190.42277
http://doi.acm.org/10.1145/42190.42277
https://doi.org/10.1145/42190.42277
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://bugs.openjdk.java.net/browse/JDK-8262877
https://bugs.openjdk.java.net/browse/JDK-8262877
https://doi.org/10.1145/3385412.3385973

S. Liu, J. Bender, J. Palsberg 23:27

A the Full JAM21 Model
let opq = O | RA | V
let rel = W & (RA | V)
let acq = R & (RA | V)
let f_rel = REL | V
let f_acq = ACQ | V
let vol = V
let fence = F

(* volatile accesses extend push order *)
let svo = po;[fence & f_rel];po;[W] | [R];po;[fence & f_acq];po
let spush = po;[fence & vol];po

(* release acquire ordering *)
let ra = po;[rel] | [acq];po

(* intra thread volatile ordering *)
let volint = [vol];po;[vol] (* OLD: po;[vol & R] | [vol & W];po *)

(* intrathread ordering contraints *)
let into = svo | spush | ra | volint

(* cross thread push ordering extended with volatile memory accesses *)
let push = spush | volint
with pushto from linearisations(domain(push), ((W * FW) & loc & ~id) | rf | po)

(* extend ra visibility *)
let vvo = rf | svo | ra | push | pushto;push
let vo = vvo+ | po-loc

include "filters.cat" (* includes WW filter *)
let WWco(rel) = WW(rel) & loc & ~id
(* final writes are co-after everything *)
let cofw = WWco((W * FW))

(* jam coherence *)
let coww = WWco(vo)
let cowr = WWco(vo;invrf)
let corw = WWco(vo;po)
let corr = [opq] ; WWco(rf;po;invrf) ; [opq]
let coinit = loc & IW*(W\IW)

include "cross.cat"
let co0 = loc & (IW * (W \ IW)|(W \ FW) * FW)
with cormwtotal from generate_orders(RMW, co0)

let rec co-jom = coww | cowr | corw | corr | cormwtotal
| WWco((rf;[RMW])^-1;co-jom) | coinit | cofw

acyclic (po | rf) ; [opq] as no-thin-air
acyclic co-jom as coherence

ECOOP 2022

23:28 Compiling Volatile Correctly in Java

B the Full JAM ′
21 Model

include "filters.cat"
include "cross.cat"
let WWco(rel) = WW(rel) & loc & ~id
let co0 = loc & (IW * (W \ IW)|(W \ FW) * FW)
with cormwtotal from generate_orders(RMW, co0)

let opq = O | RA | V
let rel = W & (RA | V)
let acq = R & (RA | V)
let f_rel = REL | V
let f_acq = ACQ | V
let vol = V
let fence = F

(* volatile accesses extend push order *)
let svo = po;[fence & f_rel];po;[W] | [R];po;[fence & f_acq];po
let spush = po;[fence & vol];po

(* release acquire ordering *)
let ra = po;[rel] | [acq];po

(* intra thread volatile ordering *)
let volint = [vol];po;[vol] (* OLD: po;[vol & R] | [vol & W];po *)

(* intrathread ordering contraints *)
let into = svo | spush | ra | volint
let push = spush | volint

let rec co-jom = coww | cowr | corw | corr | cormwtotal
| WWco((rf;[RMW])^-1;co-jom) | coinit | cofw

and fr-jom = rf^-1 ; co-jom
and fr-jom-e = fr-jom & ext
and co-jom-e = co-jom & ext
and chapo = rfe | fr-jom-e | co-jom-e | (fr-jom-e ; rfe) | (co-jom-e ; rfe)

(* extend ra visibility *)
and vvo = rf | svo | ra | push | push ; chapo ; push
and vo = vvo+ | po-loc

and cofw = WWco((W * FW))
and coww = WWco(vo)
and cowr = WWco(vo;invrf)
and corw = WWco(vo;po)
and corr = [opq] ; WWco(rf;po;invrf) ; [opq]
and coinit = loc & IW*(W\IW)

acyclic (po | rf) ; [opq] as no-thin-air
acyclic co-jom as coherence

S. Liu, J. Bender, J. Palsberg 23:29

C The Power Memory Model in Herd7

PPC
(* Model for Power *)
include "cos.cat" (* Used to compute the coherence order*)

(* Uniproc *)
acyclic po-loc | rf | fr | co as scperlocation

(* Atomic *)
empty rmw & (fre;coe) as atomic

(* Utilities *)
let dd = addr | data
let rdw = po-loc & (fre;rfe)
let detour = po-loc & (coe ; rfe)
let addrpo = addr;po

(*******)
(* ppo *)
(*******)

let sync = try fencerel(SYNC) with 0
let lwsync = try fencerel(LWSYNC) with 0
let eieio = try fencerel(EIEIO) with 0
let isync = try fencerel(ISYNC) with 0
show sync,lwsync,eieio

(* Dependencies *)
show data,addr
let ctrlisync = try ctrlcfence(ISYNC) with 0
show ctrlisync
show isync ctrlisync as isync
show ctrl ctrlisync as ctrl
show isync,ctrlisync

(* Initial value *)
let ci0 = ctrlisync | detour
let ii0 = dd | rfi | rdw
let cc0 = dd | po-loc | ctrl | addrpo
let ic0 = 0

(* Fixpoint from i -> c in instructions and transitivity *)
let rec ci = ci0 | (ci;ii) | (cc;ci)
and ii = ii0 | ci | (ic;ci) | (ii;ii)
and cc = cc0 | ci | (ci;ic) | (cc;cc)
and ic = ic0 | ii | cc | (ic;cc) | (ii ; ic) (* | ci inclus dans ii et cc *)

let ppo =
let ppoR = ii & (R * R)
and ppoW = ic & (R * W) in

ppoR | ppoW

(* fences *)

let lwsync = lwsync (W * R)
let eieio = eieio & (W * W)

(* All arm barriers are strong *)
let strong = sync
let light = lwsync|eieio

let fence = strong|light

(* happens before *)
let hb = ppo | fence | rfe

ECOOP 2022

23:30 Compiling Volatile Correctly in Java

acyclic hb as thinair

(* prop *)
let hbstar = hb*
let propbase = (fence|(rfe;fence));hbstar

let chapo = rfe|fre|coe|(fre;rfe)|(coe;rfe)

let prop = propbase & (W * W) | (chapo? ; propbase*; strong; hbstar)

acyclic co|prop as propagation
irreflexive fre;prop;hbstar as observation

let xx = po & (X * X)
acyclic co | xx as scXX

S. Liu, J. Bender, J. Palsberg 23:31

D A Proof of Compilation Correctness to Power

D.1 The JAM ′
21 Model

The motivation of JAM ′
21 is to enable simpler compilation proofs. JAM21 enforces a total

order among fullFence()s, which introduces complexity when proving compilation correct-
ness. Therefore, we introduce an intermediate memory model JAM ′

21 that is observationally
equivalent to the JAM21. Thus, we start by defining and proving the observational equiva-
lence of the two models. Then we use JAM ′

21 to prove the correctness of the compilation
schemes.

The JAM ′
21 model is the same as JAM21 except for the semantics of full fences. Instead of

having a total order on full fences, JAM ′
21 only enforces order when there is a communication

edge. The full semantics of JAM ′
21 can be found in Appendix B. Here we only include the

updated portion. The definition for chapo is newly added6. The cross-thread synchronization
effect of fullFence()s is then defined as push; chapo; push (instead of pushto; push as
before):

chapo ≜ rfe | fre | coe | (fre ; rfe) | (coe ; rfe)
vvo ≜ ... | push ; chapo ; push

The rest of JAM ′
21 are the same as JAM21.

▶ Definition 10 (JAM ′
21 Consistency). An execution history H is JAM ′

21-consistent if
it is trace coherent and satisfies the following two requirements:

1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf−−−−−→)
2. Coherence: co-jom is acyclic, acyclic(co-jom−−−−−→)

We say such an execution history H is allowed by JAM ′
21. Otherwise, it is forbidden.

▶ Lemma 2. Observational equivalence is a transitive relation. That is, if H and H ′ are
observationally equivalent, and H ′ and H ′′ are observationally equivalent, then H and H ′′

are observationally equivalent.

Proof. The transitivity follows directly from the transitivity of set equivalence in the defini-
tion. ◀

▶ Lemma 3. (⇒) Given a program P , for any JAM21-consistent execution H ∈ HistoriesJAM (P),
there exists a H ′ ∈ HistoriesJAM ′ such that H ′ is observationally equivalent to H.

Proof. Given a program P , it’s obvious that there exists an H ′ that is observationally
equivalent to H. We prove that H ′ ∈ HistoriesJAM ′(P). That is, let H ′ be a candidate
execution of P and H ′ is observationally equivalent to H. We show that H ′ is JAM ′

21-
consistent. Since the only difference between JAM21 and JAM ′

21 is at the effect of full
fences, we focus on this part in our proof. In particular, we first show that, if i1

push−−−−→ i3,
i2

push−−−−→ i4, and i3
chapo−−−−→ i2, then it must be that i1

vo−−→ i4 and not i2
vo−−→ i3. We can

prove this by analyzing five cases:

6 The name chapo comes directly from the Power Memory Model in the Herd [1] repository. We use the
same name here so that the readers can easily relate them

ECOOP 2022

23:32 Compiling Volatile Correctly in Java

1. i3
rf−−→ i2: then we have i1

push−−−−→ i3
rf−−→ i2

push−−−−→ i4, which is equivalent to i1
vvo−−−→

i3
vvo−−−→ i2

vvo−−−→ i4, which means i1
vo−−→ i4 and not i2

vo−−→ i3 (as it’d create a vo cycle
in the latter case).

2. i3
co−−→ i2: then it cannot be i2

vo−−→ i3 on the right side as it immediately gives us a
coherence cycle by coww. So it must be i1

vo−−→ i4 and not i2
vo−−→ i3.

3. i3
fr−−→ i2: then there exists a write event W such that W rf−−→ i3 and W co−−→ i2. If we

have i2
vo−−→ i3 then we would have i2

co−−→ W by cowr, which gives us a coherence cycle.
Therefore it must be that i1

vo−−→ i4 and not i2
vo−−→ i3.

4. i3
co−−→ W1

rf−−→ i2: if we have i2
vo−−→ i3 then, because rf is also a visibility order, we

have W1
vo−−→ i3. By coww we get W1

co−−→ i3, contradicting with the earlier assumption
that i3

co−−→ W1. So it must be that i1
vo−−→ i4 and not i2

vo−−→ i3.
5. i3

fr−−→ W1
rf−−→ i2: then it means there is W2 such that W2

rf−−→ i3 and W2
co−−→ W1.

If we have i2
vo−−→ i3, since rf is also a visibility order, we have W1

vo−−→ i3. By cowr,
we have W1

co−−→ W2, contradicting with the assumption of W2
co−−→ W1 earlier. So it

must be i1
vo−−→ i4 and not i2

vo−−→ i3.

Thus we have shown that if we have i1
push−−−−→ i3, i2

push−−−−→ i4, and i3
chapo−−−−→ i2, then it must

be that i1
vo−−→ i4 and not i2

vo−−→ i3.
We now show that H ′ is JAM ′

21-consistent. The No-Thin-Air requirement is automatically
fulfilled since H.E = H ′.E, H.po = H ′.po and H.rf = H ′.rf.

Previously, we have shown that i1
push−−−−→ i3, i2

push−−−−→ i4, and i3
chapo−−−−→ i2 implies

i1
vo−−→ i4 and not i2

vo−−→ i3 in H. Since H is JAM21-consistent, then co-jom is acyclic
with either i1

vo−−→ i4 or i2
vo−−→ i3. Now we have two cases:

1. No communication: then we do not have any extra vo edge we can use to infer in H ′

either. Since co-jom is acyclic in H, and H.vo = H ′.vo, co-jom is acyclic in H ′, too.
2. With communication chapo: suppose i3

chapo−−−−→ i2 (the other direction is symmetrically
the same), then it must be that i1

vo−−→ i4 and not i2
vo−−→ i3 in H. Since H is JAM21-

consistent, we know that i1
vo−−→ i4 cannot lead to any co-jom cycle. In H ′, we use

(vo-5’) to infer that i1
vo−−→ i4. Since other portions of H ′ satisfies the above conditions,

we can infer that i1
vo−−→ i4 cannot lead to any co-jom cycle in H ′ either.

Since neither case leads to a co-jom cycle in H ′, we can conclude that H ′ is JAM ′
21-consistent

and hence H ′ ∈ HistoriesJAM ′(P)
◀

▶ Lemma 4. Let fullfence-vo order be the vo order derived using the rule (vo-5) of
JAM21. In JAM21, for any co-jom cycle derived from the fullfence-vo orders, there is a
vo∗; fullfence-vo; vo∗; chapo cycle.

Proof. Let i1, i2, i3 and i4 be four events in an execution history H such that i1
push−−−−→ i3 and

i2
push−−−−→ i4. By (vo-5), we derive the condition (i1

fullfence-vo−−−−−−−−−→ i4) ∨ (i2
fullfence-vo−−−−−−−−−→ i3).

Suppose that H is not consistent due to this condition under JAM21, i.e., following either
side of the disjunction we can derive a co-jom cycle. We analyze one side of the disjunction
since the other side of the disjunction symmetrically follow the same reasoning. We analyze
each possible rule to derive a coherence cycle. Since fullfence-vo is included in vo order,
we only need to analyze the cases where vo appears:

· coww. If we derived the coherence cycle from coww rule, then it means there exists W1 and
W2 such that W1

vo−−→ W2 and W2
co−−→ W1. The fact that i1

vo−−→ i4 "enables" us (we can
only use rule (vo-7) here as other visibility rules imply program structures that does not

S. Liu, J. Bender, J. Palsberg 23:33

Figure 10 i1
push−−−−→ i3

vo−−→∗ E4
chapo−−−−→ E3

vo−−→∗ i2
push−−−−→ i4

vo−−→∗ E2
chapo−−−−→ E1 cycle

require i1
vo−−→ i4) to derive this contradiction implies the following structure: W1

vo−−→∗

i1
vo−−→ i4

vo−−→∗ W2
co−−→ W1, revealing a cycle of vo∗; fullfence-vo; vo∗; chapo.

· cowr. If we derived the coherence cycle from cowr rule, then it means there exists
R1, W1, and W2 such that W1

rf−−→ R1, W2
vo−−→ R1, and W1

co−−→ W2. The fact
that i1

vo−−→ i4 "enables" us to derive this contradiction implies the following structure:
W2

vo−−→∗ i1
vo−−→ i4

vo−−→∗ R1. Because W1
co−−→ W2 and W1

rf−−→ R1, we have
R1

fr−−→ W2. We now have a cycle W2
vo−−→∗ i1

vo−−→ i4
vo−−→∗ R1

fr−−→ W2, which is a
cycle of vo∗; fullfence-vo; vo∗; chapo.

· corw. If we derived the coherence cycle from corw rule, then it means there exists R1, W1,
and W2, such that W1

rf−−→ R1, R1
vo−−→ W2, and W2

co−−→ W1. The fact that i1
vo−−→ i4

"enables" us to derive this contradiction implies the following structure: R1
vo−−→∗ i1

vo−−→
i4

vo−−→∗ W2
co−−→ W1

rf−−→ R1, which is a cycle of vo∗; fullfence-vo; vo∗; chapo.

◀

▶ Lemma 5. (⇐) Given a program P , for any JAM ′
21-consistent execution H ′ ∈ HistoriesJAM ′(P),

there exists an execution history H ∈ HistoriesJAM (P) such that H is observationally equiv-
alent to H ′.

Proof. Given a program P , it’s obvious that there exists an H that is observationally
equivalent to H ′. We prove that H ∈ HistoriesJAM (P). That is, let H be a candidate
execution of P and H is observationally equivalent to H ′. We show that H is JAM21-
consistent. To help the reader better understand this, consider Fig. 10. Suppose H is an
execution history that is forbidden by the rules of JAM21, we show that its corresponding
H ′ is also forbidden by JAM ′

21. Since the only difference between JAM21 and JAM ′
21 is

at the effects of full fences, we only analyze that part. In other words, H is forbidden by
JAM21 precisely due to the total order of full fences. Let i1, i2, i3, and i4 be events in H

such that i1
push−−−−→ i3 and i2

push−−−−→ i4. By Lemma 4, we can generalize the structure and
infer that there are E1, E2, E3, and E4 such that E1

vo−−→∗ i1, E3
vo−−→∗ i2, i4

vo−−→∗ E2,
and i3

vo−−→∗ E4. In addition, we also have E2
chapo−−−−→ E1 and E4

chapo−−−−→ E3. Because H is
forbidden under JAM21, it means we have two cycles, i1

vo−−→ i4
vo−−→∗ E2

chapo−−−−→ E1
vo−−→∗ i1

and i2
vo−−→ i3

vo−−→∗ E4
chapo−−−−→ E3

vo−−→∗ i2, so that no matter which side of the disjunction
we choose, we always end up with a contradiction. In H ′, on the other hand, we do not have
i1

vo−−→ i4 or i2
vo−−→ i3. However, despite the absence of the two edges, we now have a larger

cycle: i1
push−−−−→ i3

vo−−→∗ E4
chapo−−−−→ E3

vo−−→∗ i2
push−−−−→ i4

vo−−→∗ E2
chapo−−−−→ E1, which forms

a vo cycle by (vo-5’) in JAM ′
21. Therefore, execution history H ′ is forbidden under JAM ′

21

ECOOP 2022

23:34 Compiling Volatile Correctly in Java

as well, which contradicts to our previous assumption. Thus, since H ′ ∈ HistoriesJAM ′(P)
implies that H ′ is JAM ′

21-consistent, H ∈ HistoriesJAM (P). ◀

Essentially, the replacement of the (vo-5) rule give no actual effect in forbidding executions.
In JAM21, we look for two vo cycles to forbid an execution, whereas in JAM ′

21 we combine
the two cycles into one to forbid the execution.
▶ Theorem 12 (Observational Equivalence of JAM21 and JAM ′

21). JAM ′
21 is

observationally equivalent to JAM21.

Proof. Given a program P , let HistoriesJAM (P) be the set of JAM21-consistent candidate
executions of P and HistoriesJAM ′(P) be the set of JAM ′

21-consistent candidate executions
of P . By Lemma 3, we know that for all H ∈ HistoriesJAM (P), there exists an H ′ ∈
HistoriesJAM ′(P) such that H ′ and H are observationally equivalent. Similarly, by Lemma 5,
we know that for all H ′ ∈ HistoriesJAM ′(P), there exists an H ∈ HistoriesJAM (P) such
that H and H ′ are observationally equivalent. Combining together, we can conclude that
JAM21 and JAM ′

21 are observationally equivalent. ◀

▶ Corollary 3. JAM ′
21 satisfies the same important properties (Theorem 14, Theorem 15,

Theorem 16, Theorem 17 and Corollary 4) in Section. H.

Proof. Since the definitions in JAM ′
21 are the same as JAM21 except for the semantics of

fullFences, JAM ′
21 automatically satisfies Theorem. 14, Theorem. 15, Theorem 16, and

Theorem. 17. By Theorem. 12, JAM21 and JAM ′
21 allow the same set of execution histories

up to observational equivalence. Therefore, JAM ′
21 also satisfies Corollary. 4.

◀

D.2 Compilation to Power
▶ Lemma 1 (JAM ′

21 to Power). Let Psrc be a Java program, Ptgt be the Power program
compiled from Psrc using the compilation scheme in Fig. 4 (with the leading fence convention).
For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM ′(Psrc) such that
Hsrc ; Htgt.

Proof. It is obvious that there exists a candidate execution history Hsrc of Psrc such that
Hsrc ; Htgt. We show that Hsrc ∈ HistoriesJAM ′(P). That is, Hsrc is JAM ′

21-consistent.
In order to be consistent under JAM ′

21, we need Hsrc to satisfy two requirements:

1. No-Thin-Air Requirement: (po | rf) is acyclic. The intra-thread rfi order cannot
contradicting the po given that Htgt is Power-consistent. Therefore, we need to show that
(po | rfe) is acyclic. Note that since the only inter-thread order is rfe. If there is a cycle
in (po | rfe), then the head of each thread is a ROpq and the last event in each thread
participating in this cycle is a W Opq, where ROpq po−−→ W Opq in Hsrc. Using a compiler
that follows the compilation scheme, this translates to R ctrl−−−−→ W in Htgt. Further we
can infer that R hb−−→ W in Htgt. Power ensures that (hb | rf) is acyclic. Therefore, if
there is a cycle of (po | rf) in Hsrc, Htgt would not be consistent under Power’s memory
model, contradicting to our previous assumption. For readers who do not care about this
guarantee, getOpaque() can be directly compiled to a lwz instruction.

2. Coherence Requirement: co-jom is acyclic. We now prove that co-jom is acyclic in
Hsrc. In order to show this, we show that co-jom is a partial order of co in Htgt. In
other words, co is a linear extension of co-jom. We prove this by assuming the opposite
and deriving a contradiction.

S. Liu, J. Bender, J. Palsberg 23:35

Suppose that there exists i1
co-jom−−−−−→ i2 in Hsrc but i2

co−−→ i1 in Htgt. We analyze each
of the possible cases where we can derive a co-jom order.

· coinit. This automatically gives us a contradiction since Hsrc.IW = Htgt.IW.
· cofw. This automatically gives us a contradiction since Hsrc.FW = Htgt.FW.
· corr. This implies that there exist R1 and R2 such that, R1

po−−→ R2, i1
rf−−→ R1, and

i2
rf−−→ R2. We also have i2

co−−→ i1. Now the SC-per-location requirement of Power is
violated, contradicting with our previous assumption that Htgt is Power-consistent.

· coww. This implies that i1
vo−−→ i2 but i2

co−−→ i1.
- i1

po-loc−−−−−→ i2. i2
co−−→ i1 would violates the SC-Per-Location Requirement of Power,

making Htgt inconsistent, contradicting to our previous assumption.
- i1

svo−−−→ i2 or i1
ra−−→ i2 or i1

push−−−−→ i2. In Htgt, this means i1
lwsync−−−−−→ i2 or

i1
sync−−−−→ i2. Note that all three cases of them are included in program order

with access to the same location. Therefore, i2
co−−→ i1 would violates the SC-Per-

Location Requirement of Power, making Htgt inconsistent, contradicting to our
previous assumption.

- i1
push−−−−→ E1

chapo−−−−→ E2
push−−−−→ i2 for some E1 and E2. Note that we have E1

chapo−−−−→
E2

sync−−−−→ i2 and i2
co−−→ i1

sync−−−−→ E1. They form a propagation (prop) cycle
between i2 and E1, which makes Htgt not Power-consistent, giving us a contradiction.

- i1
vvo−−−→ i3

vvo−−−→ i2. This corresponds to the inductive case where the visibility
order is formed by two visibility orders through another event, i3. Note that all the
cases of vo orders produce propagation (prop) orders. Therefore, we get a violation
of the Propagation requirement if i2

co−−→ i1 in Power, contradicting to our previous
assumption that Htgt is Power-consistent.

· cowr. This implies that there exists R such that i2
rf−−→ R and i1

vo−−→ R.
- i1

po-loc−−−−−→ i2. i2
co−−→ i1 would violates the SC-Per-Location Requirement of Power,

making Htgt inconsistent, contradicting to our previous assumption.
- i1

svo−−−→ R or i1
ra−−→ R or i1

push−−−−→ R. In Htgt, this means i1
lwsync−−−−−→ i2 or

i1
sync−−−−→ i2. Note that all three cases of them are included in program order

with access to the same location. Therefore, i2
co−−→ i1 would violates the SC-Per-

Location Requirement of Power, making Htgt inconsistent, contradicting to our
previous assumption.

- i1
push−−−−→ E1

chapo−−−−→ E2
push−−−−→ R for some E1 and E2. Because i2

rf−−→ R

and i2
co−−→ i1, we have R fr−−→ i1. We now have E1

chapo−−−−→ E2
sync−−−−→ R and

R fr−−→ i1
sync−−−−→ E1. Both of them form a propagation order between R and E1

and they contradict with each other.
- i1

vvo−−−→ i3
vvo−−−→ R This corresponds to the inductive case where the visibility order

is formed by two visibility orders through another event, i3. Note that all the cases
of vvo orders produce propagation orders. Therefore, we get R fr−−→ i1

prop−−−−→ R,
which violates the observation requirement in Power.

· corw. This implies that there exists R such that R po−−→ i2 and i1
rf−−→ R. i2

co−−→ i1
would cause a violation of SC-Per-Location requirement in Power.

· cormwexcl. This implies that i1 is a RMW operation and there exists i3 such that
i3

rf−−→ i1 and i3
co−−→ i2. Having i2

co−−→ i1 immediately violates the atomicity
requirement of Power.

· cormwtotal. i1
co−−→ i2 because Htgt.co ⊆ Hsrc.to. Therefore, having i2

co−−→ i1 in this
case would yield a cycle in co, violating the propagation requirement in Power.

ECOOP 2022

23:36 Compiling Volatile Correctly in Java

Thus, we have shown that co-jom is a partial order of co in Htgt and the coherence
requirement is automatically fulfilled because co is acyclic. Hence, Hsrc ∈ HistoriesJAM ′(P).

◀

▶ Theorem 1 (Compilation Correctness to Power (Leading Fence Convention)).
The compilation from Java to Power following the compilation scheme in Fig. 4 (using the
leading fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power
program compiled from Psrc using the compilation scheme in Fig. 4 (using the leading fence
convention). For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc)
such that Hsrc ; Htgt.

Proof. By Lemma 1, we know that there exists an H ′
src ∈ HistoriesJAM ′(Psrc) such that

H ′
src ; Htgt. Therefore, by definition of the ; relation,

· Htgt is observationally equivalent to H ′
src

· Htgt.co ⊆ H ′
src.to

· If RMW, i1 ∈ H ′
src.E and RMW po−−→ i1, then RMW ctrl−−−−→ i1 in Htgt

· If ROpq, i1 ∈ H ′
src.E and ROpq po−−→ i1, then R ctrl−−−−→ i1 in Htgt

· If i1, i2 ∈ H ′
src.E and i1

push−−−−→ i2, then i1
sync−−−−→ i2 for i1, i2 ∈ Htgt.E

· If i1, i2 ∈ H ′
src.E and i1

ra−−→ i2, then i1
lwsync−−−−−→ i2 for i1, i2 ∈ Htgt.E

By Theorem 12, we know that for all H ′
src, there exists an Hsrc ∈ HistoriesJAM (P)

such that Hsrc is observationally equivalent to H ′
src. By Lemma 2, Hsrc is observationally

equivalent to Htgt. Furthermore,

· Htgt.co ⊆ Hsrc.to because Hsrc.to = H ′
src.to.

· If RMW, i1 ∈ Hsrc.E and RMW po−−→ i1, then RMW ctrl−−−−→ i1 in Htgt because Hsrc.E =
H ′

src.E and Hsrc.po = H ′
src.po.

· If ROpq, i1 ∈ Hsrc.E and ROpq po−−→ i1, then R ctrl−−−−→ i1 in Htgt because Hsrc.E = H ′
src.E

and Hsrc.po = H ′
src.po.

· If i1, i2 ∈ Hsrc.E and i1
push−−−−→ i2, then i1

sync−−−−→ i2 for i1, i2 ∈ Htgt.E because
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = H ′

src.AccessMode(i) and Hsrc.po = H ′
src.po, which

means Hsrc.push = H ′
src.push.

· If i1, i2 ∈ Hsrc.E and i1
ra−−→ i2, then i1

lwsync−−−−−→ i2 for i1, i2 ∈ Htgt.E because
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = H ′

src.AccessMode(i) and Hsrc.po = H ′
src.po, which

means Hsrc.ra = H ′
src.ra.

Therefore, we have shown that for all Htgt ∈ HistoriesP ower(P), there exists an Hsrc ∈
HistoriesJAM (P) such that Hsrc ; Htgt. That is, the compilation scheme shown in Fig. 4
is correct.

◀

▶ Corollary 1 (Compilation Correctness to Power (Trailing Fence Conven-
tion)). The compilation from Java to Power following the compilation scheme in Fig. 4 (using
the trailing fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power
program compiled from Psrc using the compilation scheme in Fig. 4 (using the trailing fence
convention). For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc)
such that Hsrc ; Htgt.

S. Liu, J. Bender, J. Palsberg 23:37

Proof. It is obvious that all the properties described in Definition 4 still hold with the
trailing fence convention. Most importantly, the property that transforms push in the source
level execution to sync in the target level execution is preserved as long as there is a hwsync
instruction inserted between every Volatile accesses. The trailing fence convention, if used
consistently, clearly satisfy this property. Then the rest of Definition 4 is unchanged since
leading/trailing fence convention only concerns the compilation schemes for Volatile accesses.
Therefore, the rest of the proof for the correctness of the trailing fence convention can be
naturally derived similarly. ◀

ECOOP 2022

23:38 Compiling Volatile Correctly in Java

E The x86 TSO Model in Herd7
X86 TSO
include "x86fences.cat"
include "filters.cat"
include "cos.cat"

(* Uniproc check *)
let com = rf | fr | co
acyclic po-loc | com

(* Atomic *)
empty rmw & (fre;coe)

(* GHB *)
#ppo
let po_ghb = WW(po) | RM(po)

#mfence
let mfence = try fencerel(MFENCE) with 0
let lfence = try fencerel(LFENCE) with 0
let sfence = try fencerel(SFENCE) with 0

show data,addr,ctrl

#implied barriers
let poWR = WR(po)
let i1 = MA(poWR)
let i2 = AM(poWR)
let implied = i1 | i2

let ghb = mfence | implied | po_ghb | rfe | fr | co
show implied
acyclic ghb as tso

S. Liu, J. Bender, J. Palsberg 23:39

F Compilation to x86-TSO

In this section we show that the current compilation scheme to x86-TSO is correct with
respect to the TSO memory model.

F.0.1 The x86-TSO Model
We use the x86-TSO model defined in Herd7 [1], and the full model can be found in
Appendix E):
▶ Definition 11. An execution history H is TSO-consistent if it is trace coherent and
satiesfies the following three requirements:

1. SC-per-location: po-loc | com is acyclic
2. Atomicity: rmw & (fre ; coe) is empty
3. Global Happens-Before: ghb is acyclic

We say such execution history H is allowed by TSO. Otherwise, it is forbidden.

F.0.2 Compilation Scheme
We use the following compilation scheme7:

getOpaque()⇝ mov
setOpaque()⇝ mov

getAcquire()⇝ mov
setRelease()⇝ mov

getVolatile()⇝ mov
setVolatile()⇝ mov ; mfence

AcquireFence()⇝ NoOp

ReleaseFence()⇝ NoOp

fullFence()⇝ mfence
getAndAdd()⇝ lock xaddl

getAndAddAcquire()⇝ lock xaddl
getAndAddRelease()⇝ lock xaddl

F.0.3 Proof of Compilation Correctness
▶ Definition 12 (Compilation of an Execution). We define the "CompilesTo" relation
;⊆ H×H for the compilation from Java to x86 as the followings: Given a Java program Psrc

and a memory model J that supports Java, let Ptgt be the target-level program compiled from
Psrc using the compilation scheme to x86 as shown above. Let Hsrc be a candidate execution
history of Psrc and Htgt be a candidate execution history of Ptgt. We say Hsrc ; Htgt if:

1. Htgt is observationally equivalent to Hsrc

2. Htgt.co ⊆ Hsrc.to
3. If i1, i2 ∈ Hsrc.E and i1

push−−−−→ i2 and i1 is a write, then i1
po−−→ i3

po−−→ i2 for i1, i2 ∈
Htgt.E and i3 ∈ Htgt.F where i3 is an event stem from an mfence instruction.

7 Note that instead of using mfence instruction for full fences, HotSpot uses a read-modify-write instruction
to emulate the synchronization effect of it. According to the definition of TSO, the synchronization
effect of a RMW event is exactly the same as an mfence event. Both of them produce a ghb order before
and after the event. Therefore, we keep the simplicity of the proof here by using the mfence instruction.

ECOOP 2022

23:40 Compiling Volatile Correctly in Java

Note that this definition does not say anything about whether an execution graph is consistent
under a memory model.
▶ Lemma 6 (JAM ′

21 to x86-TSO). Let Psrc be a Java program, Ptgt be the x86 program
compiled from Psrc using the compilation scheme to x86 as shown above. For all Htgt ∈
HistoriesT SO(Ptgt) there exists a Hsrc ∈ HistoriesJAM ′(Psrc) such that Hsrc ; Htgt.

Proof. It is obvious that there exists an Hsrc such that Hsrc ; Htgt. We show that
Hsrc ∈ HistoriesJAM ′(P). That is, we show that Hsrc is consistent under JAM ′

21 by
showing that it fulfills the two requirements of JAM ′

21.

1. No-Thin-Air Requirement. (po|rf) is acyclic. The rfi order is included in the po.
Therefore, we need to show that (po|rfe) is acyclic. Note that since the only inter-thread
order is rfe. If there is a cycle in (po|rfe), then the head of each thread is a ROpq and the
last event in each thread participating in this cycle is a W Opq, where ROpq po−−→ W Opq in
Hsrc. Using a compiler that follows the compilation scheme, this translates to R po−−→ W

in Htgt. Further we can infer that R ghb−−−→ W in Htgt. x86-TSO ensures that ghb is
acyclic. Therefore, if there is a cycle of (po|rf) in Hsrc, Htgt would not be consistent
under x86-TSO’s memory model, contradicting to our previous assumption.

2. Coherence Requirement. In order to show that Hsrc fulfills the coherence requirement,
we need to show that co in Htgt is a linear extension of co-jom in Hsrc. We prove this
by analyzing each case for co-jom. That is, if i1

co-jom−−−−−→ i2 but i2
co−−→ i1, then Htgt is

inconsistent under x86-TSO.

· coinit. This follows naturally as Hsrc.IW = Htgt.IW.
· cofw. This follows naturally as Hsrc.FW = Htgt.FW.
· corr. This implies that there exists R1 and R2 such that i1

rf−−→ R1, i2
rf−−→ R2, and

R1
po−−→ R2. From i2

co−−→ i1 we can infer that R2
fr−−→ i1. Note that R1

ghb−−−→ R2
in this case since a po order from a read event is preserved in TSO. Now we have a
ghb cycle R2

fr−−→ i1
rf−−→ R1

ghb−−−→ R2, contradicting to out previous assumption that
Htgt is consistent under x86-TSO.

· coww. This implies that i1
vo−−→ i2. We analyze each case of vo order.

- i1
po-loc−−−−−→ i2. i2

co−−→ i1 would violates the SC-Per-Location Requirement of Power,
making Htgt inconsistent, contradicting to our previous assumption.

- i1
ra−−→ i2 or i1

push−−−−→ i2 or i1
svo−−−→ i2. Note that all three cases are included

in i1
po−−→ i2 to the same location. Thus, if i2

co−−→ i1, then there would be a
cycle of (po-loc|com) in Htgt, contradicting to our previous assumption that Htgt

is consistent under TSO.
- i1

push−−−−→ E1
chapo−−−−→ E2

push−−−−→ i2 for some E1 and E2 in Hsrc. Since i1 is a write,
we can infer that i1

po−−→ iLOCK
po−−→ E1 in Htgt, where iLOCK is a RMW event.

According to x86-TSO, we can further infer that i1
ghb−−−→ iLOCK

ghb−−−→ E1 in Htgt,
which can be simplified to i1

ghb−−−→ E1. Similarly, we can infer that E2
ghb−−−→ i2

(if E2 is a read then the po order is included in ghb; otherwise, there must be a
RMW event between E2 and i2, which yields a ghb order too). Now, since the
communication edges induced by chapo are also included in ghb in Htgt, i2

co−−→ i1
would directly produce a ghb cycle, contradicting with our previous assumptions.

- i1
vvo−−−→ E vvo−−−→ i2 for some E in Hsrc. Note that vo orders in Hsrc only produce

ghb orders in Htgt. Therefore, i2
co−−→ i1 would always result in a ghb cycle in Htgt,

contradicting to the previous assumption.

S. Liu, J. Bender, J. Palsberg 23:41

· cowr. This implies that i1
vo−−→ R and i2

rf−−→ R for some R in Hsrc. With i2
co−−→ i1

we can infer that R fr−−→ i1. As in previous cases, we observe that vo only produce
ghb in Htgt. Therefore, having i2

co−−→ i1 would result in a ghb cycle in Htgt.
· corw. This implies that there is R in Hsrc such that R po−−→ i2 and i1

vo−−→ R. Note
that po order from a Read access is included in ghb in Htgt. As in previous cases, we
observe that vo only produce ghb in Htgt. Therefore, having i2

co−−→ i1 would result
in a ghb cycle, contradicting to our previous assumption.

· cormwexcl. This implies that W rf−−→ R, R rmw−−−→ i1, and W co−−→ i2 for some W and R

in Hsrc. We also have R fr−−→ i2. Now having i2
co−−→ i1 would violate the Atomicity

Requirement of TSO, contradicting to our previous assumptions.
· cormwtotal. Since there is no other restrictions on the total order among RMW

operations except that it has to be compatible with the rf and intra-thread orders, it
automatics becomes a subset of co in Htgt. Therefore, having i2

co−−→ i1 in this case
would yield a cycle in co, producing a ghb cycle in Htgt.

Thus we have shown that co is a linear extension of co-jom. As a consequence, co-jom
is guaranteed to be acyclic is Htgt is consistent under TSO.

Thus Hsrc is JAM ′
21-consistent. That is, Hsrc ∈ HistoriesJAM ′(P). ◀

▶ Theorem 13 (Compilation Correctness to x86-TSO). Let Psrc be a Java program,
Ptgt be the x86 program compiled from Psrc using the compilation scheme to x86 as shown
above. For all Htgt ∈ HistoriesT SO(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc) such
that Hsrc ; Htgt.

Proof. By Lemma 6, we know that there exists an H ′
src ∈ HistoriesJAM ′(Psrc) such that

H ′
src ; Htgt. Therefore, by definition of the ; relation,

1. Htgt is observationally equivalent to H ′
src

2. Htgt.co ⊆ H ′
src.to

3. If i1, i2 ∈ H ′
src.E and i1

push−−−−→ i2 and i1 is a write, then i1
po−−→ i3

po−−→ i2 for i1, i2 ∈
Htgt.E and i3 ∈ Htgt.F where i3 is an event stem from an mfence instruction.

By Theorem 12, we know that for all H ′
src, there exists an Hsrc ∈ HistoriesJAM (P)

such that Hsrc is observationally equivalent to H ′
src. By Lemma 2, Hsrc is observationally

equivalent to Htgt. Furthermore,

1. Htgt.co ⊆ Hsrc.to because Hsrc.to = H ′
src.to.

2. If i1, i2 ∈ Hsrc.E and i1
push−−−−→ i2 and i1 is a write, then i1

po−−→ i3
po−−→ i2 for i1, i2 ∈

Htgt.E and i3 ∈ Htgt.F where i3 is an event stem from an mfence instruction, because
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = H ′

src.AccessMode(i) and Hsrc.po = H ′
src.po, which

means Hsrc.push = H ′
src.push.

Therefore, we have shown that for all Htgt ∈ HistoriesT SO(P), there exists an Hsrc ∈
HistoriesJAM (P) such that Hsrc ; Htgt. That is, the compilation scheme to x86 is
correct. ◀

ECOOP 2022

23:42 Compiling Volatile Correctly in Java

G Program Transformations

G.1 Deordering and Reordering
▶ Theorem 4 (Deordering). Let Psrc be a Java program and Ptgt be a Java program
obtained by performing a deordering operation on a pair of accesses a and b according to
Fig. 6. Let Htgt be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such
that

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} where a and b are po-adjacent
· Hsrc.rf = Htgt.rf
· Hsrc.E = Htgt.E
· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW
· ∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)

and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Proof. Note that for the Coherence requirement, only three kinds of edges contributes
to co-jam: vo, rf, and po to the same location. Since here we are considering deorderable
pairs, which are pairs of accesses to different locations related by po in Hsrc, we only need
to consider whether deordering them would affect the set of vo in the execution. We can
analyze this case by case.

· (Rx ∗ Ry). The No-Thin-Air requirement is fulfilled automatically in Hsrc since we are
deordering a pair of reads. Since po ∩ (R⊑Opq

x ∗ Ry) ⊈ vo, it follows that Hsrc is also
JAM21-consistent.

· (Rx ∗ Wy). Hsrc fulfills Coherence since the po edge between two accesses whose access
mode is weaker or equal to Opaque mode does not contribute to any new vo edge. In
addition, Hsrc fulfills the No-Thin-Air requirement because one of the accesses is in
Plain mode where as No-Thin-Air only requires the acyclicy of po ∪ rf among Opaque
mode accesses.

· (Rx ∗ RMWy). First note that the Volatile mode for RMW s include the effect of Release
Mode. Hsrc fulfills Coherence since the po edge between Rx and RMWy does not
contribute to any new vo edge. Hsrc fulfills No-Thin-Air because Rx is Plain mode.

· (Rx ∗ F). It’s easy to see that the po edge added in Hsrc does not contribute to any new
vo edge therefore the Coherence is fulfilled. Since we are deordering a read and a fence,
Hsrc fulfills No-Thin-Air automatically.

· (Wx ∗ Ry). It’s easy to see that the po edge added in Hsrc does not contribute to any
new vo edge therefore the Coherence is fulfilled. Since we are deordering a write and
a read, Hsrc fulfills No-Thin-Air automatically. The only situation the two accesses
cannot be deordered is when they are both in Volatile mode because the po between
two Volatile accesses can be derived into a vo order.

· (Wx ∗ Wy). It’s easy to see that the po edge added in Hsrc does not contribute to any
new vo edge therefore the Coherence is fulfilled. Since we are deordering a write and a
write, Hsrc fulfills No-Thin-Air automatically. Here we need the second write Wy to
be weaker than release mode to ensure that the po between the two accesses does not
contribute to the vo order.

· (Wx ∗ RMWy). It’s easy to see that the po edge added in Hsrc does not contribute to any
new vo edge therefore the Coherence is fulfilled. Since we are deordering a write and a
read-modify-write, Hsrc fulfills No-Thin-Air automatically. Since RMWy is both in the

S. Liu, J. Bender, J. Palsberg 23:43

set of reads and in the set of writes of the execution graph Hsrc, we take the intersection
of previous cases. In addition, rel and acq do not subsume each other, so it is safe for
o2 to be acq mode.

· (Wx ∗ F). It’s easy to see that the po edge added in Hsrc does not contribute to any new
vo edge therefore the Coherence is fulfilled. Since we are deordering a write and a fence,
Hsrc fulfills No-Thin-Air automatically. Here we are basically avoiding the situation
when Wx and F can form any svo. In addition, there are also situations where Wx and
F have a svo if the writes that follows the fence are already in rel modes. Since svo
and ra are considered equivalently in terms of their memory order effect in the JAM21
model, the svo they form is redundant in the presence of all the ra.

· (RMWx ∗ Ry). It’s easy to see that the po edge added in Hsrc does not contribute
to any new vo edge therefore the Coherence is fulfilled. Since we are deordering a
read-modify-write and a read, Hsrc fulfills No-Thin-Air automatically. Here we want
to avoid the RMWx to have an access mode stronger or equal to acq mode because it’d
create an ra edge which is considered as a vo edge.

· (RMWx ∗ Wy). It’s easy to see that the po edge added in Hsrc does not contribute to any
new vo edge therefore the Coherence is fulfilled. For the No-Thin-Air requirement,
since Wy is in Plain mode, it does not contribute to any po ∪ rf cycle among Opaque
accesses.

· (RMWx ∗ RMWy). They cannot be deordered due to the No-Thin-Air requirement.
(Note that RMW operations are atomic by definition, so there is no Plain mode or Opaque
mode for RMW).

· (RMWx ∗ F). Similar to the previous cases.
· Deordering with fence. Similar to the previous cases.

◀

▶ Corollary 2 (Reordering). JAM21 supports the reordering transformation for pairs
of adjacent accesses shown in Fig. 6.

Proof. Let a and b be a pair of such memory events and a po−−→ b in Hsrc. By Theorem 4, we
know that removing the po edge between a and b does not introduce new program behavior.
Let H ′ be the execution graph after the deordering transformation. By Theorem 3, we know
that adding a po edge from b to a in H ′ does not introduce new program behavior either.
Therefore, reordering of access pairs in Fig. 6 is supported by JAM21. ◀

G.2 Merging
G.2.1 Read-read Merging
▶ Theorem 5 (Read-Read Merging). Let Htgt be an JAM21-consistent execution. Let
a ∈ Htgt.R\RMW and let a′ ∈ Htgt.E such that a rf−−→ a′. Let b /∈ Htgt.E. There exists a
Hsrc such that:

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a′, b⟩}
· Hsrc.E = Htgt.E ∪ {b}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· b ∈ Hsrc.R

ECOOP 2022

23:44 Compiling Volatile Correctly in Java

· Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ⊑ Acquire

and Hsrc is JAM21-consistent.

Proof. We show that Hsrc fulfills the two requirements needed to be JAM21-consistent.

· Suppose Hsrc violates the No-Thin-Air requirement, then there is a (po ∪ rf)+ cycle
involving b. If we have a′ rf−−→ b (po|rf)+−−−−−−→ a′, then a′ rf−−→ a (po|rf)+−−−−−−→ a′. If we have
a po−−→ b (po|rf)+−−−−−−→ a, then a (po|rf)+−−−−−−→ a. In both of the cases, Htgt is inconsistent, which
contradict with our previous assumption. Therefore, the No-Thin-Air requirement is
fulfilled by Hsrc.

· Suppose Hsrc violates the Coherence requirement, then there is a co cycle. Note that
AccessMode(b) = AccessMode(a) ⊑ Acq. In addition, for all events i, if b vo−−→ i, then
a vo−−→ i and for all events j, if j vo−−→ b, then j vo−−→ a. Therefore, for any coherence cycle
derived from the edges from and to b, there is also a coherence cycle derived from the
edges from and to a. If Hsrc has a co cycle, Htgt also has a co cycle, which contradicts
with our previous assumption.

◀

G.2.1.1 Counter Example

Here, we give an example showing that read-read merging is not allowed by JAM21 if the
read accesses are both Volatile mode. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);

}

Thread3 {
int r5 = X.getVolatile(); // 2
int r6 = X.getVolatile(); // 2
Y.setRelease(1);

}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

Applying the read-read merging transformation to this program yields:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);

}

Thread3 {
int r5 = X.getVolatile(); // 2
int r6 = r5
Y.setRelease(1);

}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graphs with the annotated read values is shown in Fig. 11 and Fig. 12.
For the two read accesses of x on Thread 3, one may think it’s OK to merge them into

one. However, since they are Volatile accesses, they also impose a push edge which is totally

S. Liu, J. Bender, J. Palsberg 23:45

Figure 11 Execution Graph before read-read merge on Volatile (Forbidden)

Figure 12 Execution Graph after read-read merge on Volatile (Allowed)

ordered with other push edges. Merging the two reads removes the synchronization provided
by the push edge, introducing the program behavior shown in Fig. 12.

G.2.2 Write-write Merging
▶ Theorem 6 (Write-Write Merging). Let Htgt be an JAM21-consistent execution. Let
b ∈ Htgt.W\RMW and let a /∈ Htgt.E and loc(a) = loc(b) ∧ ∀i ∈ Htgt.W, loc(i) = loc(b) ⇒
val(a) ̸= val(i). There exists a Hsrc such that:

· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf
· Hsrc.E = Htgt.E ∪ {a}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· a ∈ Hsrc.W

· Hsrc.AccessMode(a) = Hsrc.AccessMode(b) ⊑ Release

and Hsrc is JAM21-consistent.

Proof. We show that Hsrc fulfills the two requirements to be JAM21-consistent.

· No-Thin-Air. Note that a po−−→ b (po|rf)+−−−−−−→ a implies that b (po|rf)+−−−−−−→ b. Therefore,
if Hsrc violates No-Thin-Air, Htgt also violates No-Thin-Air, contradicting to our
previous assumption.

ECOOP 2022

23:46 Compiling Volatile Correctly in Java

Figure 13 Execution graph before write-write merge on Volatile (Forbidden)

· Coherence. First note that there is no extra rf edge from a and ∀i, (i vo−−→ a ⇒ i vo−−→
b) ∧ (a vo−−→ i ⇒ b vo−−→ i) (because a and b have the same access mode and they are not
in Volatile mode). Therefore, any co cycle derived from a, we can derive the same co
cycle with b. While a po−−→ b implies that a vo−−→ b, since there is no rf edge from a, it
cannot contribute to any extra co cycle. Therefore, if there is a co cycle in Hsrc, then it
implies that there is a co cycle in Htgt, contradicting to our previous assumption.

◀

G.2.2.1 Counter Example

We now provide a counter-example showing write-write merge is not valid for Volatile mode
writes. Consider the following example program:

Thread0 {
int r1 = X.getOpaque(); // 2
int r2 = X.getOpaque(); // 3

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(2);
X.setVolatile(1);
X.setVolatile(2);

}

Thread3 {
X.setVolatile(3);
Y.setVolatile(1);

}

The execution graph of the program before the transformation is shown in Fig. 13.
Applying write-write merging transformation to Thread 2, we have:

Thread0 {
int r1 = X.getOpaque(); // 2
int r2 = X.getOpaque(); // 3

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(2);
X.setVolatile(2);

}

Thread3 {
X.setVolatile(3);
Y.setVolatile(1);

}

The execution graph after the transformation is shown in Fig. 14. After removing the
write access in Volatile mode, the cross-thread synchronization effect between Thread 2 and
Thread 3 is also removed, introducing the new behavior in the figure.

S. Liu, J. Bender, J. Palsberg 23:47

Figure 14 Execution graph after write-write merge on Volatile (Allowed)

G.2.3 Write/RMW-read Merging
▶ Theorem 7 (Write/RMW-Read Merging). Let Htgt be a JAM21-consistent execution.
Let a ∈ Htgt.W and b /∈ Htgt.E. There exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {b}
· b ∈ Hsrc.R
· Hsrc.loc(b) = Hsrc.loc(a)
· Hsrc.val(b) = Hsrc.val(a)
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
· Hsrc.IW = Htgt.IW
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.AccessMode(b) ⊑ Opaque

Proof. We show that Hsrc fulfills the two requirements to be JAM21-consistent.

· No-Thin-Air. First note that, by the well-formedness of rf order, a is the only access
in the execution graph that has a rf edge to b. Therefore, a rf−−→ b (po|rf)+−−−−−−→ a implies
that a (po|rf)+−−−−−−→ a, which means there is also a (po|rf)+ cycle in Htgt, contradicting to
our previous assumption.

· Coherence. Since AccessMode(b) = Opaque, there is no out-going cross-thread edge
from b and for all event i such that b vo−−→ i, we have a vo−−→ i (similarly, for all event j

such that j vo−−→ b, we have j vo−−→ a). Since a rf−−→ b is intra-thread, for any co edge
derived from a rf−−→ b using the corr rule, it implies that there is a read access R and
write access W such that a rf−−→ b po−−→ R and W rf−−→ R we can derive the same co edge
using the cowr rule with a vo−−→ R and W rf−−→ R. Similarly, for any co edge derived
from a rf−−→ b using the cowr rule, it implies that there is a write access W such that
W vo−−→ b. Then W vo−−→ a as well. Using the coww rule we can derive the same co edge.
Thus, if there is any co cycle in Hsrc, the same co cycle also appear in Htgt, contradicting
to our previous assumption.

◀

G.2.3.1 Counter Example

Here we show that write/RMW-read merging is not valid if the read is or is stronger than
Acquire mode. Consider the following example:

ECOOP 2022

23:48 Compiling Volatile Correctly in Java

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(1);

}

Thread3 {
X.setRelease(2);
int r7 = X.getAcquire(); // 2
int r5 = Z.getVolatile(); // 0
int r6 = Y.getVolatile(); // 1

}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph can be found in Fig. 15. The execution is forbidden. Indeed, there
are two possible cases:

1. RV
z = 0 vvo−−−→ W V

x = 1. Since rf ⊆ vvo and ra ⊆ vvo, we can infer that W rel
x = 2 vvo−−−→

RV
z = 0 vvo−−−→ W V

x = 1. Using the coww rule, we can infer that W rel
x = 2 co−−→ W V

x = 1,
which contradicts with the co edge we inferred using the corr rule and Thread 0.

2. W V
y = 2 vvo−−−→ RV

y = 1. This immediately contradicts with the co edge we derived using
the corr rule with Thread 1.

Applying the transformation, we have:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(1);

}

Thread3 {
X.setRelease(2);
int r7 = 2;
int r5 = Z.getVolatile(); // 0
int r6 = Y.getVolatile(); // 1

}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph is shown in Fig. 16. Due to the removal of the rf and ra edge, the
previously forbidden behavior is introduced after the transformation.

G.2.4 Write-RMW Merging
▶ Theorem 8 (Write-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
b ∈ Htgt.W\Htgt.RMW, a /∈ Htgt.E and v ∈ Val. There exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {a}
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.AccessMode(a) ∈ {Opaque, Release}
· Hsrc.AccessMode(b) ∈ {Acquire, Release}
· Hsrc.loc(b) = Hsrc.loc(a)
· b ∈ Hsrc.RMW
· Hsrc.val(b) = (Hsrc.val(a), v)
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

S. Liu, J. Bender, J. Palsberg 23:49

Figure 15 Execution Graph before Write-read Merge Transformation (Forbidden)

Figure 16 Execution Graph after Write-read Merge Transformation (Allowed)

ECOOP 2022

23:50 Compiling Volatile Correctly in Java

· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Proof. Most parts of the proof is similar to the proof for write-write merging except for the
case where there is a co cycle in Hsrc due to the total coherence order among RMW operations.
Suppose Hsrc violates Coherence by having a co cycle built from the cormwtotal rule.
That is, we have a RMW operation i such that:

· If b cormwtotal−−−−−−−−→ i, then i co−−→ b

· If i cormwtotal−−−−−−−−→ b, then b co−−→ i

Note that we cannot use existing co orders to derive other orders than cormwexcl−−−−−−−→ orders
(which is also a co order). If the co between i and b are not cormwexcl−−−−−−−→ edges, then they
co-exists in one execution. Now we have i co−−→ b co−−→ i. If the co between i and b are

cormwexcl−−−−−−−→ edges, then there exist two RMW operations j and k, such that, b rf−−→ j, i rf−−→ k,
i co−−→ j and b co−−→ k. Note that there is still a total order among i, j, k in Htgt. Now
we have either j cormwtotal−−−−−−−−→ k or k cormwtotal−−−−−−−−→ j. Each case yields a contradiction by the
coermwexcl rule. Therefore, if there is a co cycle in Hsrc, Htgt is also forbidden, which
contradicts to our previous assumption. ◀

G.2.5 RMW-RMW Merging
▶ Theorem 9 (RMW-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
x be a memory location and a ∈ Htgt.E with Htgt.val(a) = (vr, vw), Htgt.loc(a) = x, and
Htgt.AccessMode(a) ∈ {Release, Acquire}. Let b /∈ Htgt.E, there exists a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {b}
· ∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
· Hsrc.val(a) = (vr, v)
· Hsrc.val(b) = (v, vw)
· Hsrc.loc(b) = x

· Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ∈ {Release, Acquire}
· Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
· Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
· Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i to−−→ a} ∪ {⟨b, j⟩ | a to−−→ j}
· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Proof. We show that Hsrc fulfills the two requirements of JAM21-consistency.

· No-Thin-Air. Suppose Hsrc violates this requirement and has a (po|rf)+ cycle. Since
Hsrc.val(a) = (vr, v) and Hsrc.val(b) = (v, vw), if a po−−→ b (po|rf)+−−−−−−→ a in Hsrc, it implies
that a (po|rf)+−−−−−−→ a in Htgt, contradicting to our previous assumption.

· Coherence. First note that there is only one rf edge from a in Hsrc and that is a rf−−→ b.
In addition, for all event i such that i vo−−→ b in Hsrc, i vo−−→ a in Htgt. For all j such
that b vo−−→ j in Hsrc, a vo−−→ j in Htgt. Therefore, if there is a co cycle in Hsrc, there is
also a co cycle in Htgt, contradicting to our previous assumption.

◀

S. Liu, J. Bender, J. Palsberg 23:51

G.3 Register Promotion for non-shared Variable
▶ Theorem 10 (Weakening for non-shared variable). Let Htgt be a JAM21-consistent
execution such that, for all accesses i and j in Htgt.E, loc(i) = loc(j) = x ⇒ Tid(i) = Tid(j)
for some memory location x. In addition, ∀i ∈ Htgt.E, loc(i) = x ⇒ AccessMode(i) = Plain.
There exists an execution Hsrc such that:

· Hsrc.E = Htgt.E
· Hsrc.po = Htgt.po
· Hsrc.rf = Htgt.rf
· Hsrc.to = Htgt.to
· Hsrc.IW = Htgt.IW
· ∀i ∈ Hsrc.E, loc(i) = x ⇒ AccessMode(i) ∈ {Release, Acquire}

and Hsrc is JAM21-consistent.

Proof. We show that Hsrc fulfills the two requirements of JAM21-consistency.

1. No-Thin-Air. Note that there is no cross-thread rf edge from or to accesses of location
x. Therefore, since Hsrc.po = Htgt.po and Hsrc.rf = Htgt.rf, if there is a (po|rf)+ cycle
in Hsrc, there is a (po|rf)+ cycle in Htgt, contradicting to our previous assumption.

2. Coherence. Note that the transformation is equivalent to removing all the ra edges
that involve accesses to x. Therefore, Hsrc.vo = Htgt.vo\{⟨a, b⟩ | (loc(a) = x ∧ a ra−−→
b ∧ AccessMode(b) ̸= Release) ∨ (loc(b) = x ∧ a ra−−→ b ∧ AccessMode(a) ̸= Acquire)}.
For accesses i and j such that loc(i) ̸= x and loc(j) ̸= x, if i vo−−→ j in Hsrc, i vo−−→ j in
Htgt. In addition, since x is not shared across different threads, all accesses to location x

are related by po. Since all accesses to x have an access mode of either Release or Acquire,
there is no cross-thread vo edges or rf edges from or to these accesses. Therefore, for all
memory location y ̸= x, Hsrc.vo ↾y= Htgt.vo ↾y. Suppose Hsrc violates this requirement
by having a co cycle:
· If there is a co cycle with accesses to location x. Since Hsrc.po-loc = Htgt.po-loc

and po-loc ⊆ vo, then there is also a co cycle with accesses to location x in Htgt,
contradicting to our previous assumption.

· If there is a co cycle with accesses to other locations. Since for all memory location
y ̸= x, Hsrc.vo ↾y= Htgt.vo ↾y and Hsrc.rf = Htgt.rf, it implies there is also a co
cycle in Htgt, contradicting to our previous assumption.

◀

▶ Theorem 11 (Removing Plain accesses for non-shared variable). Let Htgt be a
JAM21-consistent execution. Let x be a memory location and for all i ∈ Htgt.E such that
loc(i) = x, Tid(i) = t for some t. Let a /∈ Htgt.E. There is a Hsrc such that:

· Hsrc.E = Htgt.E ∪ {a}
· Hsrc.loc(a) = x

· Hsrc.AccessMode(a) = Plain
· Hsrc.po ⊃ Htgt.po
· for all i ∈ Hsrc.E such that Hsrc.loc(i) = x, i po−−→ a or a po−−→ i

· Hsrc.rf = Htgt.rf if a ∈ Hsrc.W\RMW , otherwise, Hsrc.rf = Htgt.rf ∪ {⟨i, a⟩} such
that (i ∈ Hsrc.W) ∧ (loc(i) = x) ∧ (i po−−→ a) ∧ (∀j ∈ Hsrc.E, (loc(j) = x) ∧ (j po−−→ a) ⇒
(j po−−→ i)).

· Hsrc.to = Htgt.to

ECOOP 2022

23:52 Compiling Volatile Correctly in Java

· Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Proof. It is clear that Hsrc does not violate No-Thin-Air and there is no co cycle for
accesses to location x. For Coherence, note that for all memory location y ̸= x, Hsrc.vo ↾y=
Htgt.vo ↾y and Hsrc.rf = Htgt.rf, it implies that if there is a co cycle in Hsrc there is also
a co cycle in Htgt, contradicting to our previous assumption. ◀

S. Liu, J. Bender, J. Palsberg 23:53

H Key Properties of the JAM21 Model

In this section, we show some key properties of JAM21. First we show that the prior theorems
of JAM19 still hold for JAM21 in Section H.1. Then in Section H.2, we prove that when all
accesses in program order are push ordered then the semantics of executions is sequentially
consistent. As a corollary when all accesses are Volatile, which implies a push order, then
the executions are sequentially consistent. We have defined and proved these theorems in
Coq. The Coq source code is included in our supplementary materials.

H.1 Prior Theorems
The JAM21 model preserves the two main theoretical results of [3], namely the monotonicity
of access modes and the causal-acquire reads. We recount each theorem here briefly beginning
with the monotonicity of access modes. In addition, we prove the DRF-SC theorem for
JAM21.

We use the reflexive ordering of the access modes as Plain ⊑ Opaque ⊑ ReleaseAcquire ⊑
Volatile and extend it to accesses lm1 ⊑ lm2 , lm1 := n1 ⊑ lm2 := n2, RMW(l, n1) ⊑ RMW(l, n2)
whenever m1 ⊑ m2. We treat read-modify-write (RMW) events as always having the same
order. We extend the order to histories by matching identifiers and ordering the accesses.

H1 ⊑ H2 ≜ ∀ i a1 a2, H1(is(i, a1)) ∧ H2(is(i, a2)) =⇒ a1 ⊑ a2

We adopt the same notion of "well-formedness" from [3] for a given history H, i.e., trace
coherence8.
▶ Definition 13 (Trace Coherence). An execution history H is trace coherent if:

· Each memory location is initialized by an initial write. For each event i ∈ H.E \ {H.IW ∪
H.F}, there exists an initial write event iw ∈ H.IW such that H.loc(i) = H.loc(iw) and
iw to−−→ i.

· Reads-from edges are well-formed. For all r ∈ H.R, there exists a unique write w such
that H.loc(w) = H.loc(r), H.val(w) = H.val(r), and w rf−−→ r.

· There exists a total trace order to for all e ∈ H.E such that to is compatible with po, rf,
ra, svo, and push.

When the po, rf, and to relations of two histories H1 and H2 have the following
relationships: H2.po ⊆ H1.po , H2.to ⊆ H1.to, H2.rf ⊆ H1.rf, then we say they match.
▶ Theorem 14 (Monotonicity). [coq/Monotonicity.v, monotonicity]
For two histories H1 and H2, suppose that both match, both are trace coherent, and H2 ⊑ H1.
Further suppose that acyclic(co−−→H1) and that there are no specified visibility orders or push
orders in H2, then acyclic(co−−→H2)

A version of DRF-SC theorem was proved in [3]. However, the theorem was different
from the standard DRF-SC theorem.

· It did not use the conventional definition of data race with the "happens-before" order.
Instead. [3] defined a sync order that captures the synchronizations between events and
defined the notion of "data-race-free" using sync.

8 We have omitted some of the details of trace coherence that are related to the internals of the modeling
language as they are irrelevant here

ECOOP 2022

23:54 Compiling Volatile Correctly in Java

· It used a stronger assumption than the standard DRF-SC theorem. In particular, given a
program P , the standard DRF-SC theorem assumes only the SC-consistent executions of
P are data race free. On the other hand, the DRF-SC theorem proved in [3] assumes all
executions of P are data race free. A similar theorem was also proved in [19], called a
"model-agnostic" definition of DRF-SC.

Here, we first prove the standard DRF-SC theorem (DRF-SC) with a weaker assumption
than [3], and then prove the "model-agnostic" DRF-SC theorem (Execution-DRF), both
using "happens-before" (hb).

We require the following standard definitions including the traditional notion of sequential
consistency (SC-consistency) [16]:

i1
fr−−→ i2 ≜ ∃ i3, i3

rf−−→ i1 ∧ i3
co−−→ i2

i1
com−−−→ i2 ≜ i1

co−−→ i2 ∨ i1
rf−−→ i2 ∨ i1

fr−−→ i2

i1
sc−−→ i2 ≜ i1

po−−→ i2 ∨ i1
com−−−→ i2

An execution H is SC-consistent if acyclic(sc−−→H).
We also require the notion of happens-before (hb) defined using the synchronizes-with

(sw) order:

i1
sw−−→ i2 ≜ (i1

rf−−→ i2 ∧ AccessMode(i1) = Release ∧ AccessMode(i2) = Acquire)
∨ (∃i3i4 ∈ F, AccessMode(i3) = Release ∧ AccessMode(i4) = Acquire

∧ i3
po−−→ i1

rf−−→ i2
po−−→ i4)

i1
hb−−→ i2 ≜ i1

po−−→ i2 ∨ i1
sw−−→ i2 ∨ ∃i3, i1

hb−−→ i3
hb−−→ i2

▶ Definition 14. Two memory accesses i1 and i2 are conflicting in an execution H if:

· i1, i2 ∈ H.E
· H.loc(i1) = H.loc(i2)
· At least one of i1 and i2 is a write

▶ Definition 15. Two memory accesses i1 and i2 form a data race if:

· i1 and i2 are conflicting
· ¬(i1

hb−−→ i2 ∨ i2
hb−−→ i1)

We say they form a volatile-race if both i1 and i2 are Volatile mode accesses.
Finally, our DRF-SC theorem is stated as the following:

▶ Theorem 15 (DRF-SC). Given a program P , if all its SC-consistent executions are
data-race-free or only have volatile-races, then the set of all JAM -consistent executions of P

coincide with the set of SC-consistent executions.
Please see Appendix I for the proof.
We also provide the "model-agnostic" [19] version of the DRF-SC theorem:

▶ Theorem 16 (Execution-drf). Any JAM -consistent execution that is data race free or
only has volatile-races is SC-consistent.

Please see Appendix J for the proof.
Finally, we demonstrate the revised semantics preserves causality with acquire reads.

▶ Theorem 17 (Causal Acquire-Reads). [coq/ReleaseAcquire.v, acq_causality]
If H is trace coherent and all reads in H are acquire-reads, then acyclic(po | rf−−−−−→).

S. Liu, J. Bender, J. Palsberg 23:55

H.2 Volatile implies SC
Here we demonstrate that when all accesses are volatile, the program will have SC semantics.

To begin, we note that both full fences and Volatile pairs result in push orders in the
formalism of [3]. That is, either a full fences or a volint edge implies a push edge. Our
approach is to prove that when all program order accesses are push ordered then the semantics
is SC. Thus, SC semantics follows as a corollary when all accesses are volint.

Recall from [3] that visibility order is acyclic. Intuitively, ordering induced by synchro-
nization should not admit cycles.
▶ Lemma 7 (Acyclic Visibility). [coq/Truncate.v, vop_irreflex]
If H is trace coherent then, acyclic(vvo−−−→).

Next we show that the communication relation is not contradicted by visibility. Since the
com relationship is composed from reads and coherence relationships, both of which encode
the ordering of effects, we expect that visibility should not contradict such an ordering.
▶ Lemma 8 (Communication Write Not-Visible). [coq/SC/Volatile.v,
coms_vo_contra]
If H is trace coherent, all accesses are executed, i1

com−−−→∗ i2 and i2 is a write then
¬(i2

vvo−−−→+ i1)
Next we will establish that, when two pairs of push ordered accesses are connected by a

possibly empty sequence of com edges, the first access of the first pair has been executed
before the first access of the second pair. Intuitively, whenever there is a full fence between
these two pairs of accesses then the order in which those fences executed must be consistent
with the direction of the com relation.
▶ Lemma 9 (Push Trace-ordered). [coq/SC/Volatile.v, svo_comp_svo_to]
If H is trace coherent, acyclic(co−−→), all accesses are executed, all accesses are push ordered,
i1

push−−−−→ i2
com−−−→∗ i3

push−−−−→ i4, then i1
to−−→ i3.

Proof. First, note that it is decidable whether i3 is a write. We will begin by considering
the case where it is a write. Since to−−→ is total we consider each case for i1 and i3. First,
if i1

to−−→ i3 we are done. Second, for i1 = i3 we will demonstrate a contradiction. By
assumption we have i1

push−−−−→ i2, then by substitution we have i3
push−−−−→ i2. By the definition

of push we have i3
vo−−→ i2. By assumption we have i2

com−−−→∗ i3. By Lemma 8 we have
¬(i3

vo−−→ i2) and a contradiction. Finally, for i3
to−−→ i1 we will also demonstrate a

contradiction. By assumption we have both i1
push−−−−→ i2 and i3

push−−−−→ i4. Then by the
definition of pushto−−−−−→ and i3

to−−→ i1 we have i3
vo−−→ i2. As before we have i2

com−−−→∗ i3. By
Lemma 8 we have ¬(i3

vo−−→ i2) and a contradiction.
Now consider the case where i3 is not a write, then it must be a read and there exists

some write iw such that iw
rf−−→ i3. It can be shown that i2

com−−−→∗ iw. Thus we have
i1

push−−−−→ i2
com−−−→∗ iw

rf−−→ i3
push−−−−→ i4. Note that, because Lemma 8 applies to i2

com−−−→∗ iw

we have that ¬(i2
vvo−−−→+ iw) and we must derive a contradiction by showing iw

vvo−−−→+ i2.
For i1 = i3 we have i3

vvo−−−→ i2 as before. Since iw
rf−−→ i3 by the definition of vvo−−−→ we

have iw
vvo−−−→ i3 and iw

vvo−−−→ i2
vvo−−−→ i3 as required. For i3

to−−→ i1 again we have that
i3

vvo−−−→ i2 and in turn we have iw
vvo−−−→ i2

vvo−−−→ i3 as required. ◀

Now we can demonstrate that when all accesses are push ordered the program semantics
is SC. The key idea is that any cycle in the sc relation (i.e. a non-SC execution) will have at
least one program order edge and at least one com edge. Thus we can show that the program
order edge will appear twice in the cycle and then use Push Trace-ordered inductively to show
that such a push order would have to execute before itself, thereby deriving a contradiction.

ECOOP 2022

23:56 Compiling Volatile Correctly in Java

▶ Theorem 18 (All Push SC). [coq/SC/Volatile.v, push_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all accesses are push
ordered then acyclic(sc−−→).

Proof. We assume i1
sc−−→ i1 and derive a contradiction. Observe that i1

sc−−→ i1 must include
at least one com−−−→ edge because po−−→ is acyclic. Further observe that it must also include at
least one program order edge because com−−−→ is also acyclic. Thus there exists some access
i2 such that we can rearrange to obtain a sequence of program order and communication
edges, i2(po−−→ com−−−→+)+i2. We proceed by induction on the length of this sequence. In the
base case there exists some i3 such that i2

po−−→ i3
com−−−→+ i2 which wraps around to give

i2
po−−→ i3

com−−−→+ i2
po−−→ i3. Then Push Trace-ordered applies to give i2

to−−→ i2, but this is
a contradiction since the trace order is total. In the inductive case we use the same argument
and connect the trace order from the inductive hypothesis to give a contradiction. ◀

From Theorem 18 we can derive two corollaries. The first shows that when all accesses
are Volatile the semantics is SC. The second shows that when all accesses have full fences
between them, represented by spush in the model, the semantics is SC. The structure of
the model and our definition for Volatile accesses shines through here as both results follow
directly from a single result about the behavior of full fences.
▶ Corollary 4 (All Volatile SC). [coq/SC/Volatile.v, volatile_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all accesses are Volatile
mode accesses then acyclic(sc−−→).

Proof. If all accesses are volatile then any two program order accesses are push ordered and
we can appeal to Theorem 18. ◀

▶ Corollary 5 (All Specified Push SC). [coq/SC/Volatile.v, spush_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all program ordered (po)
accesses are ordered by specified push order (spush) then acyclic(sc−−→).

Proof. If any two program order accesses have a specified push order then they are similarly
push ordered and we can again appeal to Theorem 18. ◀

S. Liu, J. Bender, J. Palsberg 23:57

I The Standard DRF-SC Theorem

▶ Theorem 15 (DRF-SC). Given a program P , if all its SC-consistent executions are
data-race-free or only have volatile-races, then the set of all JAM -consistent executions of P

coincide with the set of SC-consistent executions.

Proof. Let P be a program, and suppose all its SC-consistent executions only has Volatile-
races. We want to show that P has no weak behavior. Toward contradiction, let’s assume
there exists an execution H of P such that H is JAM -consistent but not SC-consistent.
▶ Definition 16. An execution H ′ is called a prefix of an execution H if H ′ is obtained by
restricting H to a set of events E such that:

1. the set of initialization events E0 ∈ E

2. for any event b ∈ E, if there is a po−−→ b or a rf−−→ b in H, then a ∈ E. (Closed with
respect to (H.po ∪ H.rf))

I.0.0.1 Claim 1

Any prefix of a JAM -consistent execution is JAM -consistent.

I.0.0.2 Claim 2

Any prefix of an SC-consistent execution is SC-consistent.

Proof. The above two claims are true because a prefix consists of a subset of edges and
events of the original execution. If there is a cycle that violates the requirements of the
memory models, then the same cycle is present in the original execution graph. Therefore,
since we assumed H is JAM -consistent, any prefix of H is also JAM -consistent. ◀

I.0.0.3 Notations

For a set of events E, let Π(E) denote the set of all pairs ⟨a, b⟩ ∈ E × E of conflicting
events, such that {H.AccessMode(a), H.AccessMode(b)} ̸= {Volatile} and ⟨a, b⟩, ⟨b, a⟩ /∈
(H.po ∪ H.rf ↾Volatile)+.

Π(E) = {⟨a, b⟩ ∈ E × E | {H.AccessMode(a), H.AccessMode(b)} ≠ {Volatile},

⟨a, b⟩, ⟨b, a⟩ /∈ (H.po ∪ H.rf ↾Volatile)+}

Let a1, ..., an be an enumeration of events ordered by trace orders (recall that trace order
is a total order among the events in an execution that is compatible with (H.po ∪ H.rf)+).

Let Ei denotes the subset of events E0 ∪ {a1, ..., ai} and Hi be the execution restrict to
Ei. This is easy to see that each Hi is a prefix to H because the trace order is compatible
with (H.po ∪ H.rf)+. Therefore, Hi is also JAM -consistent by Claim 1.

I.0.0.4 Claim 3

For every 1 ≤ i ≤ n, if Π(Ei) = ∅, then Hi is SC-consistent.

Proof. Suppose that Π(Ei) = ∅. Then, for every conflicting pair ⟨a, b⟩, either H.AccessMode(a) =
H.AccessMode(b) = Volatile or ⟨a, b⟩ ∈ (H.po∪H.rf ↾Volatile)+ or ⟨b, a⟩ ∈ (H.po∪H.rf ↾Volatile
)+.

ECOOP 2022

23:58 Compiling Volatile Correctly in Java

1. For any a rf−−→ b in Hi.
- If H.AccessMode(a) = H.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ H.rf ↾Volatile.
- If ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+.
- If ⟨b, a⟩ ∈ (H.po ∪ H.rf ↾Volatile)+, then there is a (po ∪ rf)+ cycle between a and b.

By the No-Thin-Air requirement, Hi is not JAM -consistent. Contradicting to our
previous assumption. Therefore it is impossible to have ⟨b, a⟩ ∈ (H.po∪H.rf ↾Volatile)+.

Thus, Hi.rf ⊆ (H.po ∪ H.rf ↾Volatile)+

2. For any a co−−→ b in Hi,
- If H.AccessMode(a) = H.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ H.co ↾Volatile.
- If ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+.
- If ⟨b, a⟩ ∈ (H.po∪H.rf ↾Volatile)+, then the the domains of the H.rf on the path from b

to a has access mode equal to Volatile which includes Release semantics. Similarly, the
ranges of the H.rf have access mode equal to Volatile which includes Acquire semantics.
Therefore, po ⊆ ra on this path. That is, we have ⟨b, a⟩ ∈ (H.ra ∪ H.rf ↾Volatile)+ ⊆
H.vvo+. By coww, we have ⟨b, a⟩ ∈ H.co. With a co−−→ b, we now have a co cycle,
contradicting to the earlier assumption that Hi is JAM -consistent. Therefore, it is
impossible that ⟨b, a⟩ ∈ (H.po ∪ H.rf ↾Volatile)+.

Thus, we have Hi.co ⊆ (H.po ∪ H.rf ↾Volatile)+ ∪ H.co ↾Volatile.
3. For any a fr−−→ b in Hi,

- If H.AccessMode(a) = H.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ H.fr ↾Volatile.
- If ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+.
- If ⟨b, a⟩ ∈ (H.po∪H.rf ↾Volatile)+, then the the domains of the H.rf on the path from b

to a has access mode equal to Volatile which includes Release semantics. Similarly, the
ranges of the H.rf have access mode equal to Volatile which includes Acquire semantics.
Therefore, po ⊆ ra on this path. That is, we have ⟨b, a⟩ ∈ (H.ra ∪ H.rf ↾Volatile
)+ ⊆ H.vvo+. Expanding the definition of fr, there exists a write event i such that
⟨i, a⟩ ∈ Hi.rf and ⟨i, b⟩ ∈ Hi.co. By cowr, we have ⟨b, i⟩ ∈ Hi.co. Now we have a co
cycle, contradicting with the earlier assumption that Hi is JAM -consistent. Therefore,
it is impossible that ⟨b, a⟩ ∈ (H.po ∪ H.rf ↾Volatile)+.

Thus, we have Hi.fr ⊆ (H.po ∪ H.rf ↾Volatile)+ ∪ H.fr ↾Volatile.

Therefore, we have Hi.po ∪ rf ∪ fr ∪ co ⊆ H.po ∪ rf ↾Volatile ∪fr ↾Volatile ∪co ↾Volatile. Since
Hi is JAM -consistent, any prefix of Hi is JAM -consistent as well (by Claim 1). By our
previous lemma that Volatile ⇒ SC, any prefix of Hi with all events marked as Volatile
are SC-consistent. If Hi is not SC-consistent and there is a cycle of H.po ∪ rf ↾Volatile
∪fr ↾Volatile ∪co ↾Volatile, then there exists a prefix of Hi containing all the events in this cycle
and hence not SC-consistent. This contradicts with our previous assumption. Thus, Hi is
SC-consistent. ◀

Now, continuing our proof, since H is not SC-consistent, we know that Π(E) ̸= ∅.

I.0.0.5 Convention

In the rest of the proof, we treat an Read-modify-write (RMW) event as two separate events
ordered by the rmw order. That is, each RMW event in H consists of two events i1 and i2
such that ⟨i1, i2⟩ ∈ H.rmw, where i1 ∈ H.R and i2 ∈ H.W.

Let k = min{i | Π(Ei) ̸= ∅}. Then it is clear that Hk−1 is the maximum SC-consistent pre-
fix of H. That is, Π(Ek−1) = ∅ and Hk−1 is SC-consistent. We also have Π(Ek) ̸= ∅ and Hk is

S. Liu, J. Bender, J. Palsberg 23:59

not SC-consistent. That is, there exists j < k such that {H.AccessMode(aj), H.AccessMode(ak)} ≠
{Volatile}, and ⟨aj , ak⟩, ⟨ak, aj⟩ /∈ H.po ∪ H.rf ↾Volatile.

I.0.0.6 Claim 4

Let B = {b | ⟨b, ak⟩ ∈ Hk.po}, then ⟨aj , b⟩ /∈ (H.po ∪ H.rf)+.

Proof. Since Π(Ek−1) = ∅, we have Hk−1.rf ⊆ (H.po ∪ H.rf ↾Volatile)+. If ⟨aj , b⟩ ∈ (H.po ∪
H.rf)+, then we have ⟨aj , b⟩ ∈ (H.po ∪ H.rf ↾Volatile)+. From that we have ⟨aj , ak⟩ ∈
(H.po ∪ H.rf ↾Volatile)+ since ⟨b, ak⟩ ∈ H.po, which contradicts to our previous assumption.
Therefore, ⟨aj , b⟩ /∈ (H.po ∪ H.rf)+. ◀

1. ak ∈ H.W.

I.0.0.7 Claim 5

⟨aj , ak⟩ forms a data race.

Proof. Since Hk is closed under (H.po ∪ H.rf) and ak is the last event in the total trace
order in Hk, there is no outgoing edge from ak. Therefore, ⟨ak, aj⟩ /∈ (H.po ∪ H.rf)+. In
addition, Since ak is a write, we cannot have ⟨aj , ak⟩ ∈ H.rf. Therefore, if ⟨aj , ak⟩ ∈ H.hb,
then it would imply that ⟨aj , b⟩ ∈ (H.po ∪ H.rf)+ for some b such that ⟨b, ak⟩ ∈ H.po,
which contradicts with Claim 4. Therefore, ⟨aj , ak⟩ /∈ (H.po∪H.rf)+ and ⟨aj , ak⟩ forms
a race in Hk. ◀

I.0.0.8 Claim 6

Hk is not SC-consistent.

Proof. Given that ⟨aj , ak⟩ forms a data race in Hk and {H.AccessMode(aj),
H.AccessMode(ak)} ≠ {Volatile}, this follows from the assumption. ◀

I.0.0.9 Claim 7

There does not exists a read event b such that ⟨b, ak⟩ ∈ H.rmw.

Proof. Suppose toward conradiction that there is b such ⟨b, ak⟩ ∈ H.rmw. Since Hk

is not SC-consistent, there is cycle of (Hk.po ∪ Hk.rf ∪ Hk.fr ∪ Hk.co)+. Since Hk−1
is SC-consistent, it must be that ak is part of the cycle in Hk. That is, there is a
(Hk.po∪Hk.rf∪Hk.fr∪Hk.co) edge from ak. Additionally, it cannot be a po or rf because
Hk is a closed prefix of H. Since ak is a write, it cannot be fr either. Therefore, there
is some c in Hk−1 such that ⟨ak, c⟩ ∈ H.co and ⟨c, ak⟩ ∈ (H.po ∪ H.rf ∪ H.fr ∪ H.co)+.
Extending the edges, we have ⟨c, d⟩ ∈ (H.po ∪ H.rf ∪ H.fr ∪ H.co)∗, and ⟨d, ak⟩ ∈
(H.co ∪ H.fr ∪ H.po). We analyze each case below.

- ⟨d, ak⟩ ∈ H.co. Then we know that c, d ∈ Hk−1 are writes to the same location. Since
Hk−1 is SC-consistent, and ⟨c, d⟩ ∈ (Hk−1.po ∪ Hk−1.rf ∪ Hk−1.fr ∪ Hk−1.co)∗, we
have ⟨c, d⟩ ∈ Hk−1.co∗. If c = d, then we have a Hk.co cycle between c and ak, making
Hk not JAM -consistent. Therefore, we have ⟨c, d⟩ ∈ Hk−1.co. But we also have
⟨d, ak⟩, ⟨ak, c⟩ ∈ Hk.co. Together, they yield a co cycle, contradicting with our eariler
assumption that Hk is JAM -consistent.

ECOOP 2022

23:60 Compiling Volatile Correctly in Java

- ⟨d, ak⟩ ∈ H.fr. Then we know d is a read. Hiven that ⟨ak, c⟩ ∈ H.co, we can infer that
⟨d, c⟩ ∈ Hk−1.fr. But we also have ⟨c, d⟩ ∈ (Hk−1.po∪Hk−1.rf∪Hk−1.fr∪Hk−1.co)∗,
which forms a cycle between c and d, contradicting to the assumption that Hk−1 is
SC-consistent.

- ⟨d, ak⟩ ∈ H.po. Then we have ⟨d, b⟩ ∈ Hk−1.po?. Since ⟨b, ak⟩ ∈ Hk.rmw, by
cormwexcl, we know that there exists some e such that ⟨e, b⟩ ∈ Hk−1.rf and ⟨e, c⟩ ∈
Hk−1.co. Therefore, ⟨b, c⟩ ∈ Hk−1.fr. However, we also have ⟨c, d⟩ ∈ (Hk−1.po ∪
Hk−1.rf ∪ Hk−1.fr ∪ Hk−1.co)∗ and ⟨d, b⟩ ∈ Hk−1.po?. Now we have a cycle contra-
dicting to the assumption that Hk−1 is SC-consistent.

◀

Now let H ′
k be a transformation of Hk such that for all ⟨ak, c⟩ ∈ Hk.co, we have

⟨c, ak⟩ ∈ H ′
k.co. Since there is no b such that ⟨b, ak⟩ ∈ H.rmw, transforming the co edges

in Hk in this way won’t affect any other fr or rf edges in Hk. As a result, H ′
k is the same

as Hk except for the co edges. Moreover, H ′
k is SC-consistent because we have established

that the only way to form a cycle in Hk is to have ⟨ak, c⟩ ∈ Hk.co for some c and H ′
k

essentially breaks the cycle by flipping the co arrows. However, we still have ⟨aj , ak⟩
forming a race in H ′

k and {H ′
k.AccessMode(aj), H ′

k.AccessMode(ak)} ≠ {Volatile}.

I.0.0.10 Claim 8

All prefixes of SC-consistent executions of P are data race free.

Proof. This follows from the fact that prefixes are closed under po ∪ rf. ◀

I.0.0.11 Claim 9

H ′
k is a prefix of some SC-consistent execution of P .

Proof. Since H ′
k is SC-consistent and closed under po ∪ rf, we can construct an SC-

consistent execution H ′ such that for all event i ∈ H ′.E\H ′
k.E and e ∈ H ′

k.E, we have
⟨e, i⟩ ∈ H ′.to (trace order). ◀

It is clear that the fact H ′
k has a data race ⟨aj , ak⟩ contradicts with Claim 8 and Claim

9.
2. ak ∈ H.R.

Then we know that aj is a write.
Let E = {a ∈ H.E | ⟨a, ak⟩ ∈ (H.po ∪ Hk−1.rf)∗} ∪ {a ∈ H.E | ⟨a, aj⟩ ∈ (H.po ∪
Hk−1.rf)∗}. Note that there does not exist any a ∈ E such that ⟨aj , a⟩ ∈ (H.po ∪
Hk−1.rf)∗ and ⟨a, ak⟩ ∈ (H.po ∪ Hk−1.rf)∗ since Hk−1 is closed under (H.po ∪ H.rf).
Let H ′ be the restriction of Hk to the events in E.

I.0.0.12 Claim 10

⟨aj , ak⟩ forms a data race in H ′

Proof. Since ak is a read event, there is no out-going rf edge from ak. Because H ′ itself
is closed under H.po ∪ H.rf, we have ⟨ak, aj⟩ /∈ (H ′.po ∪ H ′.rf)+. In addition, there is
no out-going edge from aj in H ′, so ⟨aj , ak⟩ /∈ (H ′.po ∪ H ′.rf)+. ◀

S. Liu, J. Bender, J. Palsberg 23:61

Now, we want to construct an SC-consistent execution that contains the race ⟨aj , ak⟩ to
show a contradiction.
Let x be the location ak accesses and c be the last write to x according to H ′.co.

- c ≠ aj . Let d be the write to x such that ⟨d, ak⟩ ∈ H ′.rf. We transform H ′ so that
ak reads from c instead of d. That is, we remove ⟨d, ak⟩ from H ′.rf, change the value
of ak to the value of c, and add ⟨c, ak⟩ to H ′.rf. The immediate consequence of this
transformation is, for all e such that ⟨d, e⟩ ∈ H ′.co, the fr edge from ak to e are also
removed. Since ak is a read event, there cannot be rf or co edge going out from ak. As
a result, we cannot form a (po∪rf∪co∪fr)+ cycle with ak and the resulting execution
is SC-consistent. Then the fact that ⟨aj , ak⟩ is a data race gives us a contradiction.

- c = aj . That is, ak forms a race with the last write to the same location. Let d be
the write to x such that ⟨a, ak⟩ ∈ H ′.rf. We transform H ′ so that ak reads from the
write that immediately co ordered before c. Let e be that write. We remove ⟨d, ak⟩
from H ′.rf, change the value of ak to the value of e, and add ⟨e, ak⟩ to H ′.rf. Since
⟨e, c⟩ ∈ H ′.co, we have ⟨ak, c⟩ ∈ H ′.fr. However, since c = aj and ⟨aj , ak⟩ forms a
race, ⟨c, ak⟩ /∈ (H ′.po ∪ H ′.rf)+. That is, there is no path from c to ak in H ′. As a
result, we cannot form any cycle with the added fr edge from ak and the execution
after the transformation is SC-consistent. Since we still have ⟨c, ak⟩ forming a race, we
now have a contradiction.

◀

J A Proof of "Model-agnostic" DRF-SC

▶ Theorem 16 (Execution-drf). Any JAM -consistent execution that is data race free or
only has volatile-races is SC-consistent.

Proof. Let P be a program. We first consider the case without any Volatile-race. That
is, all conflicting pairs of accesses are ordered by the happens-before (hb) order in some
SC-consistent execution of P . We prove that there does not exist any JAM -consistent
execution of P that is not SC-consistent. Suppose toward a contradiction that there exists
an execution H of P such that H is JAM -consistent, race-free, but not SC-consistent. That
is, H has a (po ∪ rf ∪ fr ∪ co)+ cycle. In addition, we assume that co-jam ⊆ co.

First note that each of the communication edges in the cycle of H are also pairs of
conflicting accesses. Indeed, they are defined between accesses to the same location and at
least one of the accesses is a write event. Then, by our assumption that H data-race-free,
they are also ordered by the hb order. In addition, for all conflicting accesses i1 and i2 in H:

· i1
rf−−→ i2 ⇒ i1

hb−−→ i2
· i1

fr−−→ i2 ⇒ i1
hb−−→ i2

· i1
co−−→ i2 ⇒ i1

hb−−→ i2

because the other direction can immediately lead to contradictions.
Then the cycle in H a cycle of (po ∪ hb)+. We expend the definition of hb, we have a

cycle of (po ∪ (po ∪ sw)+)+, which simplifies to a (po ∪ sw)+ cycle. Hraphically the cycle
has a shape shown in Figure 17.

By the definition of sw order, the domain of each sync edge is a Release mode write (or
a release fence followed by a write) and the range of sw is an Acquire mode read (or a read
followed by an acquire fence). Therefore, we know that the "head" of each thread in this
cycle is an Acquire read and the "end" of each thread in this cycle is a Release write. By the

ECOOP 2022

23:62 Compiling Volatile Correctly in Java

semantics of Release-Acquire mode, all of the po order to a Release write and all of the po
order from an Acquire read is preserved and captured in the ra order, which is a subset of
vo. In addition, sw ⊆ vo. As a result, the cycle in H is actually a vo cycle. However, we
assumed that H is JAM -consistent and by the previous lemma by Bender et al. [3], the vo
order is acyclic in all JAM -consistent executions. Thus a contradiction.

We now consider the case where there are Volatile-races in the execution. We prove this
by incrementally inserting a pair of Volatile-race into an execution that is data-race-free and
JAM -consistent and prove that it does not introduce any weak behavior to the execution.
Let H ′ be such an execution. As we just have shown, H ′ is SC-consistent. We would like
to insert a pair of Volatile-race ⟨a, b⟩ into H ′. Let T1 be the thread where a is inserted and
T2 be the thread where b is inserted. By definition of data race, T1 ̸= T2. We have three
possible cases:

· T1 and T2 are not connected by any (po ∪ sw)+ edge before inserting ⟨a, b⟩ in H ′. That
is, there does not exist any (po ∪ sw)+ path from T1 to T2. Then inserting ⟨a, b⟩ into the
execution cannot form any cycle in (po ∪ rf ∪ fr ∪ co)+ since it can only add at most
one edge to the graph.

· There is a (po ∪ sw)+ path from T1 to T2. First note that H ′ before inserting ⟨a, b⟩
has a similar shape to H in Figure 17 except that it does not have a cycle. That
is, if two threads are connected, then they must be connected by at least an sw edge.
This implies there is a release write W Rel on T1, an acquire read RAcq on T2, and
W Rel sw−−→ (po | sw)∗−−−−−−−→ RAcq. Due to this structure, the only way to insert ⟨a, b⟩ and build
a cycle of (po ∪ rf ∪ fr ∪ co)+ is to insert a before W Rel and insert b after RAcq. Note
that this implies a ra−−→ W Rel sw−−→ (po | sw)∗−−−−−−−→ RAcq ra−−→ b. So depending on what type
of access a and b are, we have three cases:

a is a Volatile write and b is a Volatile read and b fr−−→ a. By definition of fr, there exists
a write i such that i rf−−→ b and i co−−→ a. But a ra−−→ W Rel sw−−→ (po | sw)∗−−−−−−−→ RAcq ra−−→ b

implies that a vo−−→ b, and by the cowr coherence rule, we have a co−−→ i. Now we have
a co cycle, contradicting to our assumption that H ′′ is JAM -consistency.
a is a Volatile read and b is a Volatile write and b rf−−→ a. Again, we have a vo−−→ b and
b rf−−→ a. Since rf ⊆ vo, we get a vo cycle, contradicting to our previous assumption
of JAM -consistency.
a is a Volatile write and b is a Volatile write and b co−−→ a. Again, we have a vo−−→ b

and b co−−→ a. By coww, we have a co−−→ b and b co−−→ a, a coherence cycle contradicting
to our previous assumption of JAM -consistency.

· There is a (po ∪ sw)+ path from T2 to T1. Symmetrical to the previous case.

◀

S. Liu, J. Bender, J. Palsberg 23:63

Figure 17 The Shape of the Cycle in H

K Validation

In this section, we explain our implementation of Java architecture for Herd7 [1] and
experimental results with the JAM21 model. The source code of our Java architecture
implementation will become available for artifact evaluation.

K.1 Methods supported by Java Architecture for Herd7

The list of supported methods in our implementation of Java in Herd7 [1] can be found in the
following table. We provide a description for each one of the method and its corresponding
action in Herd7.

Method Memory Action Description
getM() R(M) Read operation with access mode spec-

ified by M, where M can be omitted
(Plain mode), Opaque, Acquire, or
Volatile.

setM(val) W(M) Write operation with access mode
specified by M, where M can be omit-
ted (Plain mode), Opaque, Acquire, or
Volatile, the value written is speci-
fied by val, which can be either an
integer or a local variable.

compareAndExchangeM(expect, dest) RMW(M) An atomic compare and update oper-
ation with access mode specified by
M, where M can be omitted (Volatile
mode), Acquire, or Release.

getAndOpM(val) RMW(M) A numeric or bitwise atomic update
operation with modifying operation
specified by Op and access mode speci-
fied by M, where Op can be Add, And, Or,
or Xor; and M can be omitted, Acquire,
or Release.

fullFence() F(Volatile) A full synchronization fence.
releaseFence() F(Release) A release fence.
acquireFence() F(Acquire) An acquire fence.

Table 1 Methods supported by Java Architecture

ECOOP 2022

23:64 Compiling Volatile Correctly in Java

Name JAM19 JAM21

volatile-non-sc.4 Sometimes Never
volatile-non-sc.5 Sometimes Never

Figure 18 volatile-non-sc Experimental Results

K.2 Experimental Results
In this section, we show the experimental results of running the same set of litmus tests as in
JAM19 and compare their outcomes. Three types of results can be yielded by Herd7 at the
end, Always, Sometimes, and Never. Always and Sometimes means the behavior specified
in the litmus test is allowed, whereas Never means it is forbidden.

Fig. 18 shows the experimental results of running volatile-non-sc.4 example and its 5-thread
version with the JAM19 and the JAM21 model. As we expected, the update to the JAM21
model fixes the issue we addressed earlier in the paper and the executions changed from
Sometimes to Forbidden.

Fig. 19 shows the rest of the experimental results in details. Note that not all litmus
tests used for JAM19 [3] are translatable to Java. We marked those non-translatable tests as
“N/A” in the tables (since Java does not have the notion of address dependency). The result
agrees with our expectation that most of the litmus tests yield the same results as JAM19,
except those that are related to the inconsistency issue (highlighted using bold font). We
discuss each of the exceptions.

The execution graphs of IRIW-acq-sc are shown in Fig. 20. Our experimental results show
that this execution is forbidden under JAM19 but is allowed under JAM21. Under the JAM19
model, because the definition of volint includes orders from any instruction to a Volatile
read program ordered after the instruction, we have (c) volint−−−−−→(d) and (e) volint−−−−−→(f).
Between the two threads (P3 and P4), there is the visibility order (c) vo−→(f), or (e) vo−→(d).
Both cases can produce the contradictory result that one of the threads observes the non-
initialization write before the initialization write, i.e., a coherence cycle. Therefore, this
execution is forbidden under the JAM19 model. In JAM21, the two volint orders are no
longer present in the execution graph because the new definition of volint requires both of
the memory accesses to be Volatile. As a result, the execution becomes allowed under the
JAM21 model. To see why allowing this execution is an improvement, note that the JAM19
model only captures the "leading fence" convention that fullFence() are inserted before
Volatile accesses. On the other hand, if the compiler follows the "trailing fence" convention,
there would not be fullFence()s in P3 and P4. In that case, the execution is allowed. In
order to accommodate both conventions, the JAM21 model relaxes to allow this execution.

The execution graph of Z6.U are shown in Fig. 21. Due to the original problematic
encoding of Volatile writes, volint includes orders from Volatile writes to any program ordered
later memory accesses. Therefore,(a) volint−−−−−→(b), (c) volint−−−−−→(d), and (e) volint−−−−−→(f).
Similar to the previous example, there are two possible visibility orders, (a) vo−−→(f) or
(e) vo−−→(b). The former case leads to the derivation of (a) co−−→(Wx=0), which contradicts the
assumption that all initialization writes to variable x are ordered before all non-initialization
writes to x. The latter case leads to a contradiction as well. Because (d) reads the value
written by (e) and (c) volint−−−−−→(d), we can infer that (c) co−−→(e). If (e) vo−−→(b), then
(e) vo−−→(c). By the coww rule, (e) co−−→(c). This leads to a coherence co cycle between (c)
and (e). The JAM21 model relaxes the volint edges in P1 and P2 in order to accommodate
both the leading fence convention and the trailing fence convention. If the compiler follows the
convention of inserting fullFence() before the Volatile accesses, there is only (a) ra−−→(b)

S. Liu, J. Bender, J. Palsberg 23:65

Name JAM19 JAM21

WRC+addrs Never N/A
LB+data+data-wsi Never N/A
W+RR Never Never
totalco Never Never
PPOCA Sometimes N/A
IRIW Sometimes Sometimes
IRIW+addrs Sometimes N/A
IRIW+poaas+LL Sometimes Sometimes
IRIW+poaps+LL Sometimes Sometimes
MP+dmb.sy+addr-ws-rf-addr Sometimes N/A
WW+RR+WW+RR+wsilp+poaa+wsilp+poaa Sometimes Sometimes
LB Never Never

Name JAM19 JAM21

a1 Sometimes Sometimes
a1_reorder Sometimes Sometimes
a3 Sometimes Sometimes
a3_reorder Sometimes Sometimes
a3v2 Sometimes Sometimes
a4 Never Never
a4_reorder Sometimes Sometimes
arfna Never Never
arfna_transformed Never Never
b Never Never
b_reorder Sometimes Sometimes
c Never Never
c_p Never Never
c_p_reorder Never Never
c_pq Never Never
c_pq_reorder Never Never
c_q Never Never
c_q_reorder Never Never
c_reorder Never Never
cyc Never Never
cyc_na Sometimes Sometimes
fig1 Always Always
fig6 timed out time out
fig6_translated timed out time out
lb Never Never
linearisation Never Never
linearisation2 Never Never
roachmotel Never Never
roachmotel2 Never Never
rseq_weak Sometimes Sometimes
rseq_weak2 Always Always
seq Never Never
seq2 Never Never
strengthen Never Never
strengthen2 Never Never

Name JAM19 JAM21

2+2W Never Never
IRIW-acq-sc Never Sometimes
RWC+syncs Never Never
W+RWC Never Never
Z6.U Never Sometimes
IRIW-sc-rlx-acq Never Sometimes
cppmem_iriw_relacq Sometimes Sometimes
cppmem_sc_atomics Never Never
iriw_sc Never Never
mp_fences Never Never
mp_relacq Never Never
mp_relacq_rs Sometimes Sometimes
mp_relaxed Sometimes Sometimes
mp_sc Never Never
4.SB Sometimes Sometimes
6.SB timeout timeout
6.SB+prefetch timeout timeout
CoRWR Never Never
SB+SC Sometimes Sometimes
SB+mfences Never Never
SB+rfi-pos Sometimes Sometimes
SB Sometimes Sometimes
X000 Sometimes Sometimes
X001 Sometimes Sometimes
X002 Sometimes Sometimes
X003 Sometimes Sometimes
X004 Sometimes Sometimes
X005 Sometimes Sometimes
X006 Sometimes Sometimes
iriw-internal Sometimes Sometimes
iriw Sometimes Sometimes
podrw000 Sometimes Sometimes
podrw001 Sometimes Sometimes
x86-2+2W Sometimes Sometimes

Figure 19 Litmus Test Comparisons

ECOOP 2022

23:66 Compiling Volatile Correctly in Java

(a) Before: Forbidden (b) After: Allowed

Figure 20 IRIW-acq-sc

(a) Before: Forbidden (b) After: Allowed

Figure 21 Z6.U

(a) Before: Forbidden (b) After: Allowed

Figure 22 IRIW-seq-rlx

S. Liu, J. Bender, J. Palsberg 23:67

Name Power [14]
volatile-non-sc.4.ppc Sometimes
volatile-non-sc.5.ppc Sometimes

Figure 23 volatile-non-sc on Power with the incorrect compilation scheme

in P1 and no synchronization between the two instructions in P2. Thus this execution is
allowed under the JAM21 model.

Lastly, the execution graphs of IRIW-seq-rlx are shown in Fig. 22. Originally, due to the old
encoding of Volatile writes, (a) volint−−−−−→(b) and (c) volint−−−−−→(d). Two possible visibility orders
can be inferred, either (a) vo−−→(d) or (c) vo−−→(b). The former case leads to the conclusion
that (a) co−−→Wx=0 because (a) vo−−→(d) rf−−→(g) ra−−→(h) and (Wx=0) rf−−→(h). Similarly, the
latter case leads to the conclusion that (c) co−−→(Wy=0) because (c) vo−−→(b) rf−−→(e) ra−−→(f)
and (Wy=0) rf−−→(f). Each of the two conclusions contradicts the assumption that initializa-
tion writes are coherence co ordered before non-initialization writes. Therefore this execution
is forbidden by the JAM19 model. In the JAM21 model, we relax the volint order in P1
and P2 to include the situation of which the compiler inserts the fullFence() before Volatile
accesses. Thus, under the new JAM21 model, this execution is allowed.

In summary, the JAM21 model has two main differences comparing to the JAM19 model.
First, under the JAM21 model, when all memory accesses use Volatile mode, the execution is
guaranteed to be sequentially consistent, whereas the old JAM19 model has the inconsistency
issue we pointed out earlier. Second, when mixing Volatile and other access modes in a
program, the new JAM21 model accommodates both the "leading fence" convention and the
"trailing fence" convention so that the compiler is free to choose either one to implement.

K.3 Compilation to Power
We translated the volatile-non-sc.4 and the volatile-non-sc.5 example to Power instructions
according to the original compilation scheme:

The source code of the litmus tests in Power instructions can be found in Appendix L.
Fig. 23 shows the results of running the litmus tests with Power instructions on Herd7 using
Power’s memory model. Both of the executions are allowed under Power’s memory model,
which confirms the problem we addressed in this paper. The executions becomes forbidden if
we change the lwsync instruction in the program to hwsync.

ECOOP 2022

23:68 Compiling Volatile Correctly in Java

L Source Code of litmus tests

In this section we provide the source code of the two examples that demonstrate the
inconsistency issue we addressed in the paper. In addition, we include the same tests
translated to Power instructions.

L.1 volatile-non-sc.4.litmus
Java volatile-non-sc.4
{

x = 0; y = 0;
0:X=x; 0:Y=y;
1:X=x; 1:Y=y;
2:X=x; 2:Y=y;
3:X=x; 3:Y=y;

}

Thread0 {
Y.setVolatile(2);
int r0 = X.getVolatile();

}

Thread1 {
X.setVolatile(1);

}

Thread2 {
int r0 = X.getVolatile();
Y.setVolatile(1);

}

Thread3 {
int r0 = Y.getVolatile();
int r1 = Y.getVolatile();

}

exists
(0:r0=0 /\ 2:r0=1 /\ 3:r0=1 /\ 3:r1=2)

L.2 volatile-non-sc.5.litmus
Java volatile-non-sc.5
{

x = 0;
y = 0;
z = 0;
0:X=x;0:Y=y;0:Z=z;
1:X=x;1:Y=y;1:Z=z;
2:X=x;2:Y=y;2:Z=z;
3:X=x;3:Y=y;3:Z=z;
4:X=x;4:Y=y;4:Z=z;

}

Thread0 {
X.setVolatile(1);
int r1 = Y.getVolatile();

}

Thread1 {
Y.setVolatile(1);

}

Thread2 {
int r1 = Y.getVolatile();
Z.setVolatile(1);

}

Thread3 {
Z.setVolatile(2);
int r1 = X.getVolatile();

}

Thread4 {
int r1 = Z.getVolatile();
int r2 = Z.getVolatile();

}

exists
(0:r1 = 0 /\ 2:r1 = 1 /\ 3:r1 = 0

/\ 4:r1 = 1 /\ 4:r2 = 2)

S. Liu, J. Bender, J. Palsberg 23:69

L.3 volatile-non-sc.4.ppc.litmus
PPC volatile-non-sc.4.ppc
{

0:r1=x; 0:r2=y;
1:r2=y;
2:r1=x; 2:r2=y;
3:r1=x;

}

P0 | P1 | P2 | P3 ;
li r3,2 | li r3,1 | li r3,1 | sync ;
lwsync | lwsync | sync | lwz r3,0(r1) ;
stw r3,0(r1) | stw r3,0(r2) | lwz r4,0(r2) | lwsync ;
sync | sync | sync | sync ;
lwz r4,0(r2) | | stw r3,0(r1) | lwz r4,0(r1) ;
lwsync | | sync | lwsync ;

exists
(0:r4=0 /\ 2:r4=1 /\ 3:r3=1 /\ 3:r4=2)

L.4 volatile-non-sc.5.ppc.litmus
PPC volatile-non-sc.5.ppc
{

0:r1=x; 0:r2=y;
1:r2=y;
2:r2=y; 2:r3=z;
3:r1=x; 3:r3=z;
4:r3=z;

}
P0 | P1 | P2 | P3 | P4 ;
li r4,1 | li r4,1 | li r4,1 | li r4,2 | sync ;
lwsync | lwsync | sync | lwsync | lwz r4, 0(r3);
stw r4,0(r1) | stw r4,0(r2) | lwz r5, 0(r2) | stw r4, 0(r3) | lwsync ;
sync | sync | lwsync | sync | sync ;
lwz r5,0(r2) | | stw r4,0(r3) | lwz r5, 0(r1) | lwz r5, 0(r3);
lwsync | | sync | lwsync | lwsync ;

exists
(0:r5 = 0 /\ 2:r5 = 1 /\ 3:r5 = 0 /\ 4:r4 = 1 /\ 4:r5 = 2)

ECOOP 2022

23:70 Compiling Volatile Correctly in Java

M Full Trace and Litmus Test the example in Section. 2

The litmus test of the example of Fig. 2 is shown below. We labeled each memory instruction
(in blue) in the litmus test for better readability of the trace. We obtained the trace by
running the ppcmem tool by [14] in the online interactive mode.

PPC volatile-non-sc.4.ppc
{
0:r1=x; 0:r2=y;
1:r2=y;
2:r1=x; 2:r2=y;
3:r1=x;
}

P0 | P1 | P2 | P3 ;
li r3,2 | li r3,1 | li r3,1 | r: sync ;
a: lwsync | f: lwsync | m: sync | s: lwz r3,0(r1) ;
b: stw r3,0(r1) | g: stw r3,0(r2) | n: lwz r4,0(r2) | t: sync ;
c: sync | h: sync | o: lwsync | t16: lwz r4,0(r1) ;
d: lwz r4,0(r2) | | p: stw r3,0(r1) | t17: sync ;
e: sync | | q: sync | ;

exists
(0:r4=0 /\ 2:r4=1 /\ 3:r3=1 /\ 3:r4=2)

One of the traces to show that this execution is allowed
(0:0) Commit reg or branch: li r3,2
(1:6) Commit reg or branch: li r3,1
(2:10) Commit reg or branch: li r3,1
(0:1) Commit barrier: lwsync: a:lwsync
(1:) Barrier propagate to thread: a:lwsync to Thread 1
(2:) Barrier propagate to thread: a:lwsync to Thread 2
(3:) Barrier propagate to thread: a:lwsync to Thread 3
(1:7) Commit barrier: sync: f:Sync
(0:) Barrier propagate to thread: f:Sync to Thread 0
(2:) Barrier propagate to thread: f:Sync to Thread 2
(3:) Barrier propagate to thread: f:Sync to Thread 3
Acknowledge sync: Sync f:Sync
(2:11) Commit barrier: sync: m:Sync
(0:) Barrier propagate to thread: m:Sync to Thread 0
(1:) Barrier propagate to thread: m:Sync to Thread 1
(3:) Barrier propagate to thread: m:Sync to Thread 3
Acknowledge sync: Sync m:Sync
(3:16) Commit barrier: sync: r:Sync
(0:) Barrier propagate to thread: r:Sync to Thread 0
(1:) Barrier propagate to thread: r:Sync to Thread 1
(2:) Barrier propagate to thread: r:Sync to Thread 2
Acknowledge sync: Sync r:Sync

(1:8) Commit write: stw r3,0(r2): g:W y=1 i:W x=0,j:W y=0
Write reaching coherence point: g:W y=1
(2:) Write propagate to thread: g:W y=1 to Thread 2
(2:12) Read from storage subsystem: lwz r4,0(r2) (from g:W y=1)
(2:12) Commit read: lwz r4,0(r2): n:R y=1
(2:13) Commit barrier: lwsync: o:Lwsync
(2:14) Commit write: stw r3,0(r1): p:W x=1 g:W y=1,i:W x=0
Write reaching coherence point: p:W x=1
(3:) Write propagate to thread: g:W y=1 to Thread 3
(3:) Barrier propagate to thread: o:Lwsync to Thread 3
(3:) Write propagate to thread: p:W x=1 to Thread 3
(3:17) Read from storage subsystem: lwz r3,0(r1) (from p:W x=1)
(3:17) Commit read: lwz r3,0(r1): s:R x=1
(0:2) Commit write: stw r3,0(r1): b:W x=2 i:W x=0,j:W y=0
Write reaching coherence point: b:W x=2

S. Liu, J. Bender, J. Palsberg 23:71

(3:) Write propagate to thread: b:W x=2 to Thread 3
(0:3) Commit barrier: sync: c:Sync
(3:) Barrier propagate to thread: c:Sync to Thread 3
(1:) Barrier propagate to thread: o:Lwsync to Thread 1
(1:) Write propagate to thread: p:W x=1 to Thread 1
(1:) Write propagate to thread: b:W x=2 to Thread 1
(1:) Barrier propagate to thread: c:Sync to Thread 1
(2:) Write propagate to thread: b:W x=2 to Thread 2
(2:) Barrier propagate to thread: c:Sync to Thread 2
Acknowledge sync: Sync c:Sync
(0:4) Read from storage subsystem: lwz r4,0(r2) (from j:W y=0)
(0:4) Commit read: lwz r4,0(r2): d:R y=0
(0:) Write propagate to thread: g:W y=1 to Thread 0
(0:) Barrier propagate to thread: o:Lwsync to Thread 0
(3:18) Commit barrier: sync: t:Sync
(0:) Barrier propagate to thread: t:Sync to Thread 0
(1:) Barrier propagate to thread: t:Sync to Thread 1
(2:) Barrier propagate to thread: t:Sync to Thread 2
Acknowledge sync: Sync t:Sync
(3:19) Read from storage subsystem: lwz r4,0(r1) (from b:W x=2)
(3:19) Commit read: lwz r4,0(r1): t16:R x=2

(0:5) Commit barrier: sync: e:Sync
(1:) Barrier propagate to thread: e:Sync to Thread 1
(2:) Barrier propagate to thread: e:Sync to Thread 2
(3:) Barrier propagate to thread: e:Sync to Thread 3
Acknowledge sync: Sync e:Sync
(1:9) Commit barrier: sync: h:Sync
(0:) Barrier propagate to thread: h:Sync to Thread 0
(2:) Barrier propagate to thread: h:Sync to Thread 2
(3:) Barrier propagate to thread: h:Sync to Thread 3
Acknowledge sync: Sync h:Sync
(2:15) Commit barrier: sync: q:Sync
(0:) Barrier propagate to thread: q:Sync to Thread 0
(1:) Barrier propagate to thread: q:Sync to Thread 1
(3:) Barrier propagate to thread: q:Sync to Thread 3
Acknowledge sync: Sync q:Sync
(3:20) Commit barrier: sync: t17:Sync
(0:) Barrier propagate to thread: t17:Sync to Thread 0
(1:) Barrier propagate to thread: t17:Sync to Thread 1
(2:) Barrier propagate to thread: t17:Sync to Thread 2
Acknowledge sync: Sync t17:Sync

Result:
0:r4=0; 2:r4=1; 3:r3=1; 3:r4=2;

ECOOP 2022

	1 Introduction
	1.1 Outline
	1.2 Supplementary Material

	2 The Problem of Compiling Volatile and How to Fix it
	3 Formal Model
	3.1 Basic Syntax
	3.2 The JAM_21 Model
	3.2.1 Visibility
	3.2.2 Coherence
	3.2.3 Execution Consistency
	3.2.4 Validation with Litmus Tests

	4 Compilation Correctness to Power
	4.1 The Power Memory Model
	4.2 Compilation Scheme
	4.3 Proof of Compilation Correctness

	5 Compiler Transformations
	5.1 Strengthening
	5.2 Sequentialisation
	5.3 Reordering
	5.4 Merging
	5.4.1 Read-Read Merging
	5.4.2 Write-Write Merging
	5.4.3 Write/RMW-read Merging
	5.4.4 Write-RMW Merging
	5.4.5 RMW-RMW Merging
	5.4.6 Fence-fence Merging

	5.5 Register Promotion for Non-shared Variable
	5.6 Why are many transformations invalid for Volatile?

	6 Performance Implications
	7 Related Work
	7.1 Sequential Consistency Issue in C/C++11
	7.2 Using Volatile to Restore Sequential Consistency in Java
	7.3 Memory Fairness and Compiler Transformations

	8 Conclusion
	A the Full JAM_21 Model
	B the Full JAM_21' Model
	C The Power Memory Model in Herd7
	D A Proof of Compilation Correctness to Power
	D.1 The JAM_21' Model
	D.2 Compilation to Power

	E The x86 TSO Model in Herd7
	F Compilation to x86-TSO
	F.0.1 The x86-TSO Model
	F.0.2 Compilation Scheme
	F.0.3 Proof of Compilation Correctness

	G Program Transformations
	G.1 Deordering and Reordering
	G.2 Merging
	G.2.1 Read-read Merging
	G.2.2 Write-write Merging
	G.2.3 Write/RMW-read Merging
	G.2.4 Write-RMW Merging
	G.2.5 RMW-RMW Merging

	G.3 Register Promotion for non-shared Variable

	H Key Properties of the JAM_21 Model
	H.1 Prior Theorems
	H.2 Volatile implies SC

	I The Standard DRF-SC Theorem
	J A Proof of "Model-agnostic" DRF-SC
	K Validation
	K.1 Methods supported by Java Architecture for Herd7
	K.2 Experimental Results
	K.3 Compilation to Power

	L Source Code of litmus tests
	L.1 volatile-non-sc.4.litmus
	L.2 volatile-non-sc.5.litmus
	L.3 volatile-non-sc.4.ppc.litmus
	L.4 volatile-non-sc.5.ppc.litmus

	M Full Trace and Litmus Test the example in Section. 2

