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What Is Decidable about Gradual Types?

ZEINA MIGEED and JENS PALSBERG, University of California, Los Angeles (UCLA), USA

Programmers can use gradual types to migrate programs to have more precise type annotations and thereby

improve their readability, efficiency, and safety. Such migration requires an exploration of the migration

space and can benefit from tool support, as shown in previous work. Our goal is to provide a foundation for

better tool support by settling decidability questions about migration with gradual types. We present three

algorithms and a hardness result for deciding key properties and we explain how they can be useful during

an exploration. In particular, we show how to decide whether the migration space is finite, whether it has a

top element, and whether it is a singleton. We also show that deciding whether it has a maximal element is

NP-hard. Our implementation of our algorithms worked as expected on a suite of microbenchmarks.
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1 INTRODUCTION
Background. Static type checking has led to more reliable and faster software because types make

programs more readable, prevent entire classes of mistakes, and help compilers optimize data layout

and data access. By contrast, dynamically typed languages allow programmers to quickly prototype

systems and build programs that are correct but fit no particular type system. The complementary

strengths of static and dynamic typing have led researchers to explore ways to combine them.

In this paper we will focus on one such combination, namely the well-known gradual typing of

Siek and Taha [2006]. Gradual typing combines static typing with a dynamic type that we will

write as Dyn. One way to take advantage of Dyn is to use static types as much as possible and use

Dyn otherwise. Gradual typing enables programmers to get the discipline of static typing and the

freedom of dynamic typing in a way that gives well-understood benefits [Siek et al. 2015a].

Gradual typing has found practical application in Typed Racket [Tobin-Hochstadt and Felleisen

2008], TypeScript [Bierman et al. 2014], Reticulated Python [Vitousek et al. 2014], and others. In

each case a programmer can view a program in the original dynamic language (Racket, JavaScript,

and Python) as a program in the gradually typed variant where all types are Dyn. Then the goal of

type migration is to change some of the Dyn types to more precise types. This goal was formalized

by Siek and Taha [2006] who defined a binary precision order ⊑ on types, including Dyn ⊑ int and

(Dyn → Dyn) ⊑ (Dyn → bool); the type on the right of ⊑ is more precise. Similarly, the precision

order ⊑ on terms that says that E ⊑ E ′
if E ′

has more precise type annotations than E. For example,

(λx : Dyn.x) ⊑ (λx . : int.x), where we improve Dyn to int. Thus, the goal of type migration of

E is to find E ′
such that E ⊑ E ′

and E ′
type checks in the gradual typing discipline. Ultimately,
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no improvement is possible

the set of migrations is finite

a maximal migration exists

a top migration exists

all lambda-terms

(a) (b) (c) (d) (e)

finitely many migrations
are possible

infinitely many migrations
are possible

the original program

migrations with
more precise types

Fig. 1. Nested sets of λ-terms: (a) no improvement is possible; (b) a top migration exists; (c) the set of
migrations is finite; (d) a maximal migration exists; (e) all lambda-terms.

programmers may prefer to find an E ′
that is the top element of the migration space, if it exists, or

else find a maximal element that cannot be improved.

Motivation. When we face a migration task, the first thing we want to know is whether any

improvement is possible; if not, then we are done right away. Otherwise, the best we can hope

for is that one of the migrations is the greatest in the ⊑-order; we call it the top migration. In the

absence of a top choice, we can ask whether the set of migrations is finite. If so, then we have a

finite set of migrations that cannot be improved in the ⊑-order; they are maximal. We must pick

one, even though none of them is ⊑-greater than the others. If the migration space is finite, then
we can find all the maximal migrations by iterating through the migration space. However, if it

is infinite, there may still be maximal migrations, in which case we can choose one of them. Or

perhaps the migration space has no maximal element at all.

We distill the properties mentioned above into four key questions to ask of every migration

problem: is any improvement possible? (Singleton problem), does a top migration exist? (Top-choice
problem), is the set of migrations finite? (Finiteness problem), and does a maximal migration exist?
(Maximality problem). Information about which kind of program we are facing will help us figure

out how long we should continue a migration exploration.
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We can use those properties to classify programs into five increasingly larger sets. Figure 1

illustrates both how those sets are nested (top half) and the migration possibilities (bottom half).

Each of (a)–(e) shows the original program as a circle and, above it, possible migrations; maximal

migrations are shown as bold circles.

Our contributions. We present algorithms (with names in bold below) and a hardness result for

deciding the four questions above for the gradually typed λ-calculus [Siek and Taha 2006].

Singleton problem: decidable in O(n2) time (Theorem 3.5) Singleton Checker
Top-choice problem: decidable in EXPTIME (Theorem 5.3) Top-Choice Checker
Finiteness problem: decidable in EXPTIME (Theorem 4.11) Finiteness Checker
Maximality problem: NP-hard (Theorem 6.1).

In Section 2 we recall the gradually typed lambda calculus, we formalize the four key properties

as decision problems, and we give examples of programs with different properties. Our singleton

checker (Section 3) relies on a theorem known as the static gradual guarantee [Siek et al. 2015a] and
on a type checker. The idea is to try all one-step improvements (that each replaces a single occurrence

of Dyn) and see if any of them type check. If none of those improvements type checks, then no

improvement is possible. Our finiteness checker (Section 4) uses type constraints. Specifically, it

represents the set of possible migrations as the set of solutions to constraints that it generates

from the program. Then, it decides whether the set of solutions is finite. Our top-choice checker

(Section 5) first runs our finiteness checker and then searches the set of migrations. Our NP-hardness

proof (Section 6) reduces 3SAT to maximality: it maps a 3SAT formula to a program in such a way

that the formula is satisfiable if and only if the program has a maximal migration.

Our implementation of our algorithms worked as expected on a suite of microbenchmarks

(Section 7). We discuss related work in Section 8. Briefly, the most closely related work is the POPL

2018 paper by Campora, Chen, Erwig, and Walkingshaw Campora et al. [2018], which presented

an efficient approach to migrating a program, but did not address the four problems listed above.

We use an entirely different approach, in part because the approach in Campora et al. [2018] may

produce non-maximal migrations (see Sections 7–8), which makes it unsuitable for our decision

problems.

An extended version of the paper is available from our website; it has supplementary material

that consists of four appendices.

2 THE GRADUALLY TYPED LAMBDA CALCULUS
2.1 Syntax and Type System
Figure 2 shows the gradually typed λ-calculus [Siek and Taha 2006], in the convenient reformulation

by Cimini and Siek [2016]. We use n to range over natural numbers and we use x to range over term

variables. Types include the special type Dyn, as well as two base types bool and int, and function

types T → T . Terms include Booleans, natural numbers, variables, abstractions, and applications.

The type rules for Booleans (T-True and T-False) and numbers (T-Num) are straightforward, and

the type rules for variables (T-Var) and abstractions (T-Abs) are as in simply-typed λ-calculus.
The type rule for applications (T-App) uses notions of matching and consistency to make it more

flexible than the rule for applications in simply-typed λ-calculus. Specifically, the use of matching

T1 � (T11 → T12) allowsT1 to be Dyn, in which caseT11 andT12 are also Dyn, as expressed in (M-Dyn).
Additionally, the use of consistency T2 ∼ T11 allows the type T2 to have a relationship with T11 that

is weaker than equality. Most notably, the rules (T ∼ Dyn) (C-Dyn1) and (Dyn ∼ T ) (C-Dyn2) define
that any type is consistent with Dyn. Note that while ∼ is reflexive and symmetric, it fails to be
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Syntax:

(Types) T ::= Dyn | bool | int | T → T

(Terms) E ::= true | false | n | x | λx : T .E | E E

(Environments) Γ ::= ∅ | Γ, x : T

Type rules:

Γ ⊢ true : bool (T-True) Γ ⊢ false : bool (T-False) Γ ⊢ n : int (T-Num)

x : T ∈ Γ
Γ ⊢ x : T

(T-Var)
Γ, x : T1 ⊢ E : T2

Γ ⊢ (λx : T1.E) : T1 → T2

(T-Abs)

Γ ⊢ E1 : T1

T1 � (T11 → T12)

Γ ⊢ E2 : T2

T2 ∼ T11 (T-App)
Γ ⊢ E1 E2 : T12

Consistency:

T ∼ Dyn (C-Dyn1) Dyn ∼ T (C-Dyn2) bool ∼ bool (C-Bool) int ∼ int (C-Int)
T1 ∼ T3 T2 ∼ T4

(T1 → T2) ∼ (T3 → T4)
(C-Arrow)

Matching:

(T1 → T2)� (T1 → T2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)
Precision:

Dyn ⊑ T (P-Dyn) T ⊑ T (P-SameT)
T1 ⊑ T3 T2 ⊑ T4

T1 → T2 ⊑ T3 → T4

(P-Arrow)

E ⊑ E (P-SameE)
T1 ⊑ T2 E1 ⊑ E2

λx : T1.E1 ⊑ λx : T2.E2

(P-Abs)
E1 ⊑ E3 E2 ⊑ E4

(E1 E2) ⊑ (E3 E4)
(P-App)

Fig. 2. The gradually typed λ-calculus.

transitive, which is an essential part of the design of the entire calculus. The precision relations on

types and terms are as we introduced them briefly in Section 1.

Next we state four properties that will be useful throughout the paper.

Theorem 2.1 (Uniqe Type). ∀E, Γ,T ,T ′, if Γ ⊢ E : T and Γ ⊢ E : T ′, then T = T ′.

Theorem 2.2 (Weakening). ∀E, Γ,T ,T ′
: if x < FV (E), then Γ ⊢ E : T iff Γ, x : T ′ ⊢ E : T .

Theorem 2.3 (Static Gradual Guarantee [Siek et al. 2015a]). ∀E, E ′, Γ,T : ∃T ′
: if Γ ⊢ E :

T ∧ E ′ ⊑ E then Γ ⊢ E ′
: T ′ ∧ T ′ ⊑ T .

Theorem 2.4 (Finite Intervals). ∀El , Eu : { E | El ⊑ E ⊑ Eu } is finite.

The type system assigns at most one type to every program, as expressed by Theorem 2.1. The

reason is that every bound variable is declared with a type. Given E, Γ, we can check in linear

time whether ∃T : Γ ⊢ E : T . We have implemented a type checker that carries out this check.

Some programs type check, like (λx : int. x)5, while other programs fail to type check, like

(λx : int. x)true, both programs in context of any environment. Theorem 2.2 is a standard result

about adding and removing parts of the environment that is true of many type systems. The

static gradual guarantee (Theorem 2.3) says that if an expression type checks and we make the

type annotations less precise, then the changed expression also type checks. The precision order

guarantees that the set of terms that fit between two terms is finite (Theorem 2.4).
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In Appendix A of the supplementary material we prove Theorem 2.1. We omit the standard proof

of Theorem 2.2. Siek et al. [2015a] proved Theorem 2.3. The proof of Theorem 2.4 is straightforward

and omitted.

2.2 Decision Problems
We define that E ′

is a Γ-migration of E (written E ≤Γ E
′
) iff (E ⊑ E ′ ∧ ∃T ′

: Γ ⊢ E ′
: T ′). Intuitively,

this means that E ′
is a Γ-migration of E if E ′

improves E and E ′
type checks.

Given E, we define the set of Γ-migrations of E: MigΓ(E) = {E ′ | E ≤Γ E
′}.

An element E ′
of MigΓ(E) is a greatest element if ∀E ′′ ∈ MigΓ(E) : E ′′ ⊑ E ′

. An element E ′

of MigΓ(E) is a maximal element if ∀E ′′ ∈ MigΓ(E) : (E ′ ⊑ E ′′) ⇒ (E ′ = E ′′). In other words, a

greatest element is ⊑-greater than all others, while a maximal element cannot be improved. If a

greatest element exists, then it is unique, and it is also a maximal element.

For given E, Γ, our goal is to decide the four questions from Section 1 aboutMigΓ(E). We formalize

those questions as follows:

Singleton problem: is MigΓ(E) a singleton?
Top-choice problem: does MigΓ(E) have a greatest element?

Finiteness problem: is MigΓ(E) finite?
Maximality problem: does MigΓ(E) have a maximal element?

2.3 The Programs in Figure 1 Have Different Properties
Figure 1 shows five example programs; now we will discuss them in detail.

No improvement is possible. Consider λx .x(succ(x)). This program uses x as both a function and

as an integer. This leaves a single choice for the type of x , namely Dyn. So, no improvement is

possible and MigΓ(E) is a singleton. In summary:

MigΓ( λx : Dyn. x(succ(x)) ) = { λx : Dyn. x(succ(x)) }

A top migration exists. Consider λx .x(succ(x(true))). This program applies x to both an integer

and to a Boolean. Additionally, the result of applying x is used as an integer. Thus, we have two

options for the type of x , namely Dyn → Dyn and Dyn → int. We have that (Dyn → Dyn) ⊑ (Dyn →

int). Thus, for E = λx .x(succ(x(true))) and Γ = succ : {int → int}, we have that MigΓ(E) has
a greatest element, namely the one that annotates x with Dyn → int. In summary,

MigΓ( λx : Dyn. x(succ(x(true)))) ) = { λx : Dyn. x(succ(x(true)))),

λx : (Dyn → Dyn). x(succ(x(true))))

λx : (Dyn → int). x(succ(x(true)))) }

Finitely many migrations exist but none is the single best. Consider succ((λy.y)((λx .x)true)). This
program binds x to a Boolean, then passes x to y, and finally uses y as an integer. This means that

for E = succ((λy.y)((λx .x)true)) and Γ = succ : {int → int}, we have that MigΓ(E) has three
elements, namely the ones that annotate x and y as follows: [x : Dyn;y : Dyn] and [x : Dyn;y : int]
and [x : bool;y : Dyn]. Notice that while MigΓ(E) is finite, it has no greatest element. In summary,

MigΓ( succ((λy : Dyn.y)((λx : Dyn.x)true)) ) = { succ((λy : Dyn.y)((λx : Dyn.x)true)) ),

succ((λy : int.y)((λx : Dyn.x)true)) ),

succ((λy : Dyn.y)((λx : bool.x)true)) )

}
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Infinitely many migrations exist and some are maximal. Consider λx .x . This program has infinitely

many migrations, which includes a maximal migration where we give x the type int. In summary,

MigΓ( λx : Dyn.x ) = { λx : Dyn.x , λx : bool.x , λx : int.x , λx : (Dyn → Dyn).x , . . . }

Every migration can be improved. Consider λx .xx . This program has infinitely many migrations

and none of them is maximal. For example, let us give x the type Dyn → int. This makes the

program type check because when we apply x to x , the type of the argument x (which is Dyn → int)
is consistent with the argument type of x (which is Dyn). However, we can improve Dyn → int by

giving x the type (Dyn → Dyn) → int. Notice that (Dyn → int) ⊑ ((Dyn → Dyn) → int). Notice
also that giving x the type (Dyn → Dyn) → int makes the program type check. This is because

when we apply x to x , the type of the argument x (which is ((Dyn → Dyn) → int) is consistent
with the argument type of x (which is (Dyn → int)). In other words, we can check easily that

((Dyn → Dyn) → int) ∼ (Dyn → Dyn). A similar improvement can be made for every type of x
that makes the program type check. So, indeed, none of the migrations is maximal. In summary,

MigΓ( λx : Dyn. xx ) = { λx : Dyn. xx , λx : (Dyn → Dyn). xx , λx : (Dyn → int). xx ,

λx : ((Dyn → Dyn) → int). xx , . . . }

3 THE SINGLETON PROBLEM
Our algorithm for the singleton problem relies on the static gradual guarantee (Theorem 2.3) and on

a type checker for the gradually typed lambda-calculus. The idea is to try all one-step improvements

and see if any of them type check. If none of those improvements type checks, then no improvement

is possible.

We begin by defining, for a type T , the set S(T ) of one-step improvements, and for a term E, the
set S(E) of one-step improvements. Intuitively, S(T ) is the set of types that are one step aboveT in

the precision relation. Similarly, S(E) is the set of terms that are one step above E in the precision

relation. We go one step above by replacing a single occurrence of Dyn by either bool, int, or
(Dyn → Dyn).

S(bool) = ∅

S(int) = ∅

S(Dyn) = { bool, int, Dyn → Dyn }

S(T1 → T2) =
⋃

T ′
1
∈S(T1)

{ T ′
1
→ T2 } ∪

⋃
T ′

2
∈S(T2)

{ T1 → T ′
2
}

S(n) = ∅

S(true) = ∅

S(false) = ∅

S(x) = ∅

S(λx : T .F ) =
⋃

T ′∈S(T )

{ λx : T ′.F } ∪
⋃

F ′∈S(F )

{ λx : T .F ′ }

S(E1E2) =
⋃

E′
1
∈S(E1)

{ E ′
1
E2 } ∪

⋃
E′

2
∈S(E2)

{ E1E
′
2
}

For example,

S(λx : Dyn.x) = { λx : bool.x, λx : int.x, λx : (Dyn → Dyn).x }
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λx : Dyn.x

λx : bool.x

λx : int.x

λx : Dyn → Dyn.x

λx : Dyn → bool.x

λx : Dyn → int.x

λx : Dyn → (Dyn → Dyn).x

λx : bool → Dyn.x

λx : int → Dyn.x

λx : (Dyn → Dyn) → Dyn.x

Fig. 3. The bottom three levels of the migration space for λx : Dyn.x .

Figure 3 shows the bottom three levels of the precision order for λx : Dyn.x . The idea is to call

S(λx : Dyn.x) to obtain the second “column” of Figure 3. Additionally, we can call S(λx : Dyn →

Dyn.x) to obtain the third “column” of Figure 3.

Now we state the correctness of S.

Theorem 3.1. ∀T : S(T ) = { Tu | Tu , T ∧ ∀T ′
: (T ⊑ T ′ ⊑ Tu ) iff ((T = T ′) ∨ (T ′ = Tu )) }.

Theorem 3.2. ∀E : S(E) = { Eu | Eu , E ∧ ∀E ′
: (E ⊑ E ′ ⊑ Eu ) iff ((E = E ′) ∨ (E ′ = Eu )) }.

The proof of Theorem 3.1 is by straightforward induction on T , and the proof of Theorem 3.2 is

by straightforward induction on E, using Theorem 3.1.

Theorem 3.3. ∀E, Γ : MigΓ(E) is a singleton iff S(E) ∩MigΓ(E) = ∅.

Proof. We will prove the two directions in turn.

Forwards direction. Suppose MigΓ(E) is a singleton, that is MigΓ(E) = {E}. We have from

Theorem 3.2 that E < S(E) so S(E) ∩MigΓ(E) = ∅.

Backwards direction. Suppose (1) S(E) ∩MigΓ(E) = ∅. Let (2) E ′ ∈ MigΓ(E) be given. We have

two cases: either E ′ = E or E ′ , E.
Let us consider the case E ′ , E. From (1) and (2) we have (3) E ′ < S(E). From (2) we have (4)

E ⊑ E ′
and (5) ∃T ′

: Γ ⊢ E ′
: T ′

. From Theorem 2.4 we have that (6) { E ′′ | E ⊑ E ′′ ⊑ E ′ }

is finite. From (6) and Theorem 3.2, we have that there must exist (7) E ′′ ∈ S(E) such that (8)

E ⊑ E ′′ ⊑ E ′
. From (5), (8), and the static gradual guarantee (Theorem 2.3), we have that (9)

∃T ′′
: Γ ⊢ E ′′

: T ′′
. From (8) and (9), we have that (10) E ′′ ∈ MigΓ(E). However, together (7) and
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(10) say that E ′′ ∈ S(E) ∩ MigΓ(E), which contradicts (1). So we conclude that the case E ′ , E
is impossible. This leaves only the case E ′ = E, which means that MigΓ(E) = {E}, which is a

singleton. □

Putting it all together. Our singleton checker works as follows:

Algorithm: Singleton Checker.
Instance: E, Γ, where FV (E) ⊆ Dom(Γ), where MigΓ(E) , ∅.

Problem: Is MigΓ(E) a singleton?
Method: 1. boolean singleton = true

2. for (E ′ ∈ S(E)) {
3. if (∃T ′

: Γ ⊢ E ′
: T ′) {

4. singleton = false
5. }

6. }

7. return singleton

Notice that we can verify the assumption MigΓ(E) , ∅ by checking that ∃T ′
: Γ ⊢ E : T ′

.

Theorem 3.4. Algorithm Singleton Checker returns true iff MigΓ(E) is a singleton.

Proof. We will go through the algorithm step by step.

Step 1: we declare a Boolean variable singleton with the initial value true. The idea is that
unless we find evidence of a second element of MigΓ(E), aside from E itself, the algorithm will

return true.
Step 2: we have from Theorem 3.3 that MigΓ(E) is a singleton iff S(E) ∩ MigΓ(E) = ∅. So, we

must check that in the body of the for-loop the algorithm sets singleton to false iff at least one

E ′ ∈ S(E) has the property that ∃T ′
: Γ ⊢ E ′

: T ′
.

Steps 3–4: if we find E ′
such that ∃T ′

: Γ ⊢ E ′
: T ′

, then we set singleton to false. □

Theorem 3.5. We can solve the singleton problem in O(n2) time.

Proof. We have from Theorem 3.4 that Algorithm Singleton Checker is correct. We can

generate S(E) in linear time in the size of E. The size of S(E) is linear in the size of E. Thus, the
algorithm runs a check of O(n) cases that each takes O(n) time, for a total of O(n2) time. □

4 THE FINITENESS PROBLEM
Our algorithm for the finiteness problem uses constraints. Specifically, our algorithm represents

the set of possible migrations as the set of solutions to constraints that are generated from the

program. Then, our algorithm decides whether the set of solutions is finite.

4.1 Constraints
We use v to range over a set of type variables TypeVar . Define the set TypeExp of type expressions

τ as follows.

τ ::= Dyn | bool | int | τ → τ | v

We define a class of constraints over type expressions. A constraint is of one of the following four

forms:

T ⊑ v Precision constraints

v �v ′ → v ′′
Matching constraints

τ = τ ′ Equality constraints

τ ∼ τ ′ Consistency constraints
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A constraint system is a pair A = (V , S), where V is a finite set of type variables, and S is a set

of constraints in which all the type variables are members of V . Intuitively, a set of constraints S
represents the conjunction of the constraints in S . Define vars(A) = V .

We need notation for talking about different sets of systems of constraints:

PMEC if (V , S) ∈ PMEC, then S can contain Precision, Matching, Equality, and

Consistency constraints

MEC if (V , S) ∈ MEC, then S can contain Matching, Equality, and Consistency constraints

EC if (V , S) ∈ EC, then S can contain Equality and Consistency constraints

C if (V , S) ∈ C, then S can contain Consistency constraints

C−
if (V , S) ∈ C−

, then S can contain any Consistency constraint of the form v ∼ τ .

Those five sets of sets of constraints have the following relationships:

PMEC ⊇ MEC ⊇ EC ⊇ C ⊇ C−

We use φ to range over mappings from a finite set of type variables to types. We use Dom(φ) to
denote the domain of φ. For a type expression τ , we use φ(τ ) to denote τ in which every variable v
has been replaced by φ(v). We order mappings as follows:

φ ≤ φ ′ ⇐⇒ Dom(φ) = Dom(φ ′) ∧ ∀v ∈ Dom(φ) : φ(v) ⊑ φ ′(v)

Notice that ≤ is a partial order. If A = (V , S) is a constraint system, then we say that a mapping φ
from V to types is a solution of A if the following conditions are satisfied.

For each: we have:

T ⊑ v T ⊑ φ(v)
v �v ′ → v ′′ φ(v)� φ(v ′) → φ(v ′′)

τ = τ ′ φ(τ ) = φ(τ ′)
τ ∼ τ ′ φ(τ ) ∼ φ(τ ′)

Let Sol(A) denote the set of solutions of A.

4.2 Generating Constraints
From E, Γ, we generate constraints Gen(E, Γ) ∈ PMEC as follows. Assume that E has been α-
converted so that all bound variables are distinct from each other and distinct from the free

variables. Let X be the set of λ-variables x occurring in E, and let Y be a set of variables disjoint

from X consisting of a variable [[F ]] for every occurrence of the subterm F in E. Let Z be a set of

variables disjoint for X and Y consisting of a variable ⟨G⟩ for every occurrence of the subterm (F G)
in E. The notations [[F ]] and ⟨G⟩ are ambiguous because there may be more than one occurrence of

some subterm F in E or some subterm G in E. However, it will always be clear from context which

occurrence is meant. Now we generate the following constraints.

For every occurrence in E generate this

of a subterm of this form: constraint:

true [[true]] = bool
false [[false]] = bool

n [[n]] = int
(free variable) x [[x]] = Γ(x)

(bound variable) x [[x]] = x
λx : S .F [[λx : S .F ]] = x → [[F ]] ∧ S ⊑ x

F G [[F ]]� ⟨G⟩ → [[FG]] ∧ ⟨G⟩ ∼ [[G]]

Before we state that the above reduction is correct, we introduce some helper notation. We

define let Dom(Γ) denote the domain of Γ: Dom(∅) = ∅ and Dom(Γ, x : T ) = Dom(Γ) ∪ {x}. We let
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FV (E) denote the set of free variables of E: FV (n) = ∅ and FV (True) = ∅ and FV (False) = ∅ and

FV (x) = {x} and FV (λx : T .F ) = FV (F ) \ {x} and FV (E1 E2) = FV (E1) ∪ FV (E2).

Theorem 4.1. ∀E, Γ : if FV (E) ⊆ Dom(Γ), then (MigΓ(E), ⊑) and (Sol(Gen(E, Γ)), ≤) are order-
isomorphic.

We prove Theorem 4.1 in Appendix B of the supplementary material.

4.3 Solving Constraints
Our algorithm for solving the finiteness problem uses four transformations that successively

transform the constraints to use fewer forms of constraints. Intuitively, the transformations work

as follows:

PMEC
SimPrec
−→ MEC

SimMatch
−→ EC

SimEq
−→ C

SimCon
−→ C−

Precision constraints. We define a simplification procedure SimPrec that transforms every Preci-

sion constraint into zero, one, or more Equality constraints:

SimPrec : PMEC → MEC

We define SimPrec to leave the set of type variables unchanged, and to proceed by repeating the

following transformation until it no longer has an effect.

From To

Dyn ⊑ v (no constraint)

bool ⊑ v v = bool
int ⊑ v v = int

T ′ → T ′′ ⊑ v v = v ′ → v ′′ ∧ T ′ ⊑ v ′ ∧ T ′′ ⊑ v ′′

where v ′,v ′′
are fresh type variables

Theorem 4.2. ∀A ∈ PMEC : Sol(A) = Sol(SimPrec(A)).

Proof. Straightforward. □

Matching constraints. We define a simplification procedure SimMatch that replaces eachMatching

constraint with one or three Equality constraints. We will use M to refer to the set of Matching

constraints. We will use match(A) to refer to the subset of Matching constraints in A.

SimMatch : MEC × 2
M → EC

Specifically, for S ⊆ match(A), we define SimMatch(A, S) by
replacing each (v �v ′ → v ′′) ∈ A ∩ S with (v = v ′ → v ′′), and

replacing each (v �v ′ → v ′′) ∈ A \ S with (v = Dyn) ∧ (v ′ = Dyn) ∧ (v ′′ = Dyn).

Intuitively, the role of S is to decide what to do with each matching constraint. Each matching

constraint (v � v ′ → v ′′) in S should be turned into an equality constraint (v = v ′ → v ′′).

Any other matching constraint (v � v ′ → v ′′) should be turned into the three constraints (v =
Dyn) ∧ (v ′ = Dyn) ∧ (v ′′ = Dyn).
Additionally, we define SimMatch to leave the set of type variables unchanged.

Theorem 4.3. ∀A ∈ MEC : Sol(A) =
⋃

S ⊆match(A) Sol(SimMatch(A, S)).

Proof. Straightforward from the definition of �. □

Theorem 4.4. ∀A ∈ MEC : Sol(A) is finite iff ∀S ⊆ match(A) : Sol(SimMatch(A, S)) is finite.

Proof. Immediate from Theorem 4.3. □
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Equality constraints. We define the set Subst of substitutions that have domain TypeVar and range
TypeExp. For a substitution σ ∈ Subst, we define Dom(σ ) to be the set of type variables v such that

σ (v) , v . We use σ ∪ σ ′
to denote the union of two substitutions σ ,σ ′

that have disjoint domains.

We define a function Unify that solves the Equality constraints.

Unify : EC → (Subst ∪ {fail})

We define Unify(A) to produce the most general unifier (MGU) of the Equality constraints in A, or,
if no solution exists, return fail.

We define a function SimEq that uses a substitution to transform away all Equality constraints.

SimEq : (EC × Subst) → C

We define SimEq(A,σ ) as follows. First, the set of type variables is vars(A) \Dom(σ ). Second, the set
of constraints consists of only Consistency constraints: apply the substitution to the Consistency

constraints in A and return only those transformed Consistency constraints.

Theorem 4.5.

∀A ∈ EC : Sol(A) =
{
{ (σ ◦ σ ′) ∪ σ ′ | σ ′ ∈ Sol(SimEq(A,σ )) } if σ , fail

∅ if σ = fail

where σ = Unify(A).

Proof. In the case of σ , fail, we have thatDom(σ ) andDom(σ ′) = vars(A)\Dom(σ ) are disjoint
so (σ ◦ σ ′) ∪ σ ′

is well defined. Additionally, we have σ = Unify(A) so any solution of A when

restricted to Dom(σ ′) = vars(A) must equal an element σ ′
of Sol(SimEq(A,σ )). We can recover any

such solution by combining σ ′
with (σ ◦ σ ′) which replaces any variable v in the codomain of σ

with σ ′(v).
In the case of σ = fail, we have that a subset of A is unsolvable, so A is unsolvable, too, hence

Sol(A) = ∅. □

Theorem 4.6. ∀A ∈ EC : Sol(A) is finite iff (σ , fail implies Sol(SimEq(A,σ )) is finite), where
σ = Unify(A).

Proof. Immediate from Theorem 4.5. □

Consistency constraints. We define a function SimCon that simplifies a set of consistency con-

straints.

SimCon : C → (C− ∪ {fail})

We define SimCon by repeatedly applying the following transformations until no transformation

applies. When the To-column lists (fail), the entire transformation returns fail.
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From To

bool ∼ bool ∅

int ∼ int ∅

τ ∼ Dyn ∅

Dyn ∼ τ ∅

(τ1 → τ2) ∼ bool (fail)
(τ1 → τ2) ∼ int (fail)
bool ∼ (τ1 → τ2) (fail)
int ∼ (τ1 → τ2) (fail)
bool ∼ int (fail)
int ∼ bool (fail)
(τ1 → τ2) ∼ (τ ′

1
→ τ ′

2
) { (τ1 ∼ τ ′

1
), (τ2 ∼ τ ′

2
) }

τ ∼ v { v ∼ τ }

Theorem 4.7.

∀A ∈ C : Sol(A) =
{
Sol(SimCon(A)) if SimCon(A) , fail
∅ otherwise

Proof. Straightforward. □

Boundedness. We introduce the core concept in our approach to solving the finiteness problem.

The idea is to check whether a constraint system is bounded, which we will define in three steps.

First, we define a notion of a path in a type expression. For a type expression τ , we can create

a syntax tree in which every node is labeled by a member of {Dyn, bool, int,→} ∪ TypeVar . For
each node in the syntax tree for τ , we can consider the path α that leads from the root to that node.

We use τ (α) to denote label of the node reached by α . We define paths(τ ) to be the set of paths

from the root of τ to all leafs of τ . We have that τ is finite so also paths(τ ) is finite.
Second, we define a predicate BoundedVar on a type variable, a type, and a constraint system.

The type is of a special form: each of its leaves is either bool or int, which means that it is maximal

in the precision order. We use MaximumType to denote the set of such types.

BoundedVar : (TypeVar ×MaximumType × C−) → Boolean
BoundedVar(v,T ,A) = ∀α ∈ paths(T ) : ∃(v ∼ τ ′) ∈ A : τ ′(α) = T (α)

Intuitively, BoundedVar(v,T ,A) says that “the variable v is bounded by a ⊑-maximum type T that

can be pieced together from constraints in A”. Specifically, for every leaf in T , we require that A
contains a constraint (v ∼ τ ′) such that τ ′ has the same type as T at the corresponding leaf. For

example, suppose A = (V , S), where

V = { v,v1,v2 }

S = { v ∼ (bool → v1), v ∼ (v2 → int) }

We have BoundedVar(v,T ,A), where T = bool → int. We can see this via a cases analysis, one

for each leaf of T . For the leaf bool of T , we have in A the constraint v ∼ (bool → v1), where

(bool → v1) has the same type (bool) as T at the corresponding leaf. Similarly, for the leaf int of

T . we have in A the constraint v ∼ (v2 → int), where (v2 → int) has the same type (int) as T at

the corresponding leaf.

Third, we define a predicate Bounded on elements of C−
:

Bounded : C− → Boolean
Bounded(A) = ∀v ∈ vars(A) : ∃T ∈ MaximumType : BoundedVar(v,T ,A)
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The Bounded predicate checks whether every solution must assign every variable a type that is

bounded by a certain ⊑-maximum type.

Theorem 4.8. For A ∈ C−: Sol(A) is finite iff Bounded(A).

Proof. In the forwards direction, suppose Sol(A) is finite. Thus, we can pick amaximalφ ∈ Sol(A).
Let v ∈ vars(A). We will define a T such that paths(T ) = paths(φ(v)). Let α ∈ paths(φ(v)). Given
that φ is maximal, the constraints must force φ(v)(α) ∈ {Dyn, bool, int}. The only way this is

possible is that we can find a constraint (v ∼ τ ′) ∈ A such that τ ′(α) ∈ {bool, int}. So we can

define the leaf in T at the end of path α to be τ ′(α). As a result, we have T ∈ MaximalType and
BoundedVar(v,T ,A). We conclude Bounded(A).

In the backwards direction, suppose Bounded(A). For each variable, we have a lower bound and

upper bound on the types that we can assign that variable. So, from Theorem 2.4 we have that

Sol(A) is finite. □

Theorem 4.9. For A ∈ C−, we can run Bounded(A) in polynomial time.

Proof. We can check Bounded(A) by, for each v ∈ vars(A), checking whether we can construct

T ∈ MaximumType such that BoundedVar(v,T ,A). We do this as follows.

First we collect all constraints in A of the form (v ∼ τ ′). Let
⋃

τ ′ paths(τ ′) denote the union
of paths(τ ′) across all such τ ′. Notice that we can construct this union in polynomial time. We

see that

⋃
τ ′ paths(τ ′) defines the largest potential tree shape of T . For each α ∈

⋃
τ ′ paths(τ ′)

we can determine and record in polynomial time whether for any constraint (v ∼ τ ′) we have
τ ′(α) ∈ {bool, int}. Now we can do a tree traversal of the tree shape defined by

⋃
τ ′ paths(τ ′) and

determine whether any subset of

⋃
τ ′ paths(τ ′) defines a T ∈ MaximumType. This traversal can be

done in polynomial time.

In summary, for each of the polynomially many v ∈ vars(A), we do a polynomial-time check,

which gives a total of polynomial time. □

Putting it all together. Our finiteness checker works as follows:
Algorithm: Finiteness Checker.
Instance: E, Γ, where FV (E) ⊆ Dom(Γ).
Problem: Is MigΓ(E) finite?
Method: 1. PMEC A1 = Gen(E, Γ)

2. MEC A2 = SimPrec(A1)

3. boolean finite = true
4. for (S ⊆ match(A2)) {

5. EC A5 = SimMatch(A2, S)
6. (Subst ∪ {fail}) σ = Unify(A5)

7. if (σ , fail) {
8. C A8 = SimEq(A5,σ )
9. (C− ∪ {fail}) A9 = SimCon(A8)

10. if (A9 , fail) {
11. if ¬Bounded(A9) {

12. finite = false
13. }

14. }

15. }

16. }

17. return finite
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Notice that we use as type annotations the names of the five sets of sets of constraints, namely

PMEC, MEC, EC, C, C−
. We also use (Subst ∪ {fail}) and (C− ∪ {fail}) as type annotations. We can

check easily that the algorithm type checks.

Theorem 4.10. Algorithm Finiteness Checker returns true iff MigΓ(E) is finite.

Proof. We will go through the algorithm step by step.

Step 1: we have from Theorem 4.1 that (MigΓ(E), ⊑) and (Sol(Gen(E, Γ)), ≤) are order-isomorphic.

So, (MigΓ(E), ⊑) is finite iff (Sol(Gen(E, Γ)), ≤) = Sol(A1) is finite.

Step 2: we have from Theorem 4.2 that Sol(A1) = Sol(SimPrec(A1)) = Sol(A2).

Step 3: we declare a Boolean variable finite with the initial value true. The idea is that unless
we find evidence of infinitely many solutions, the algorithm will return true.

Step 4: we have from Theorem 4.4 Sol(A2) is finite iff ∀S ⊆ match(A2) : Sol(SimMatch(A2, S)) is
finite. So, we must check that in the body of the for-loop the algorithm sets finite to false iff at

least one S ⊆ match(A2) has the property that Sol(SimMatch(A2, S)) is infinite. We will check this

as we go through Steps 5-12.

Step 5: here we consider one of the cases of S ⊆ match(A2). The goal is to check that the algorithm

sets finite to false iff Sol(SimMatch(A2, S)) = Sol(A5) is infinite.

Steps 6–8: we have from Theorem 4.6 that Sol(A5) is infinite iff Sol(SimEq(A5,σ )) = Sol(A8) is

infinite, where σ = Unify(A5) and σ , fail.
Steps 9–10: we have from Theorem 4.7 that either SimCon(A8) returns fail, in which case we

have Sol(SimCon(A8)) = ∅, which is finite, and otherwise Sol(A8) = Sol(SimCon(A8)) = Sol(A9).

Steps 11-12: we have from Theorem 4.8 that Sol(A9) is finite iff Bounded(A9). Thus, for an

execution arrives at Steps 11-12, we have that Sol(SimMatch(A2, S)) = Sol(A5), which is finite iff

Sol(A8) = Sol(A9) is finite. So the algorithm sets finite to false in exactly the right cases. □

Theorem 4.11. We can solve the finiteness problem in EXPTIME.

Proof. We have from Theorem 4.10 that Algorithm Finiteness Checker is correct. Let us

analyze the algorithm’s time complexity. Let n be the total size of E and Γ. Step 1 uses polynomial

time to construct A1 = Gen(E, Γ), and the size of A1 is O(n). Step 2 uses polynomial time to

construct A2 = SimPrec(A1), and the size of A2 is O(n). Step 4 is a loop that runs O(2n) iterations
because match(A2) is of size O(n). Step 5 constructs A5 which is of size O(n). Step 6 constructs

σ = Unify(A5)which is of sizeO(2n), due to a well-known property of unification. Step 8 constructs

A8 = SimEq(A5,σ )which is of sizeO(2n). Step 9 constructsA9 = SimCon(A8)which is of sizeO(2n).
Step 11 runs Bounded(A9) in time that is polynomial in O(2n), due to Theorem 4.9. From the rule

(2a)b = 2
ab

we have that in total Step 11 runs in time that is O(2n).
In summary, we have a loop that runs O(2n) iterations that each takes O(2n) time. The grand

total is O(2n) ×O(2n) = O(2n) which is in EXPTIME. □

4.4 Example of How Our Finiteness Checker Works: λx .x(succ(x(true)))

E = λx .x(succ(x(true)))

Γ = [ succ : int → int ]
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First we construct Gen(E, Γ):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
Dyn ⊑ x

x(succ(x(true))) [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]
⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x
succ(x(true)) [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]
succ [[succ]] = Γ(succ)

x(true) [[x]]� ⟨true⟩ → [[x(true)]]
⟨true⟩ ∼ [[true]]

x [[x]] = x
true [[true]] = bool

Notice that the listing above has two occurrences of [[x]] = x . Viewed as a set, Gen(E, Γ) consists of
12 constraints. Notice also that in the constraint for succ, we can use that Γ(succ) = int → int.

Next we apply SimPrec to Gen(E, Γ). This step removes Dyn ⊑ x , which leaves us with the

following 10 constraints.

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]
x [[x]] = x

succ(x(true)) [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]
⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int
x(true) [[x]]� ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]
true [[true]] = bool

Let us useA10 to denote the above set of 10 constraints. In the listing ofA10, we have three Matching

constraints, which for brevity of notation, we will number from 1 to 3, as follows:

1 : [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

2 : [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]

3 : [[x]]� ⟨true⟩ → [[x(true)]]

Now we must consider all subsets of {1, 2, 3}. For each S ⊆ {1, 2, 3}, we must determine whether

SimMatch(A10, S) has finitely many solutions.

Let us focus on S = {1, 2, 3} and construct SimMatch(A10, {1, 2, 3}):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]] = ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]
x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]
⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int
x(true) [[x]] = ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]
true [[true]] = bool
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Notice that the only change from A10 to SimMatch(A10, {1, 2, 3}) is that three occurrences of �
turned into =.

Next we apply SimEq to SimMatch(A10, {1, 2, 3}). Notice that SimMatch(A10, {1, 2, 3}) has 7 Equal-
ity constraints. Those 7 Equality constraints are satisfiable and have the following most general

unifier (φ123), where p,q are type variables.

v : φ123(v)
[[λx .x(succ(x(true)))]] : (p → q) → q

x : p → q
[[x(succ(x(true)))]] : q

[[x]] : p → q
⟨succ(x(true))⟩ : p

[[succ]] : int → int
⟨x(true)⟩ : int

[[succ(x(true))]] : int
⟨true⟩ : p

[[x(true)]] : q
[[true]] : bool

Let us use A′
to denote the subset of 3 Consistency constraints in SimMatch(A10, {1, 2, 3}), which is:

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

⟨true⟩ ∼ [[true]]

Next we apply φ123 to A
′
. The result is that SimEq(SimMatch(A10, {1, 2, 3}),φ123) is:

p ∼ int
int ∼ q
p ∼ bool

Let us use A123 to denote the above set of 3 Consistency constraints.

Next we apply SimCon to A123. The effect is to change int ∼ q into q ∼ int:

p ∼ int
q ∼ int
p ∼ bool

Let us useAcm to denote the above set of 3 Consistency constraints. We observe that Bounded(Acm).

Now we use Theorem 4.8 to conclude that Sol(Acm) is finite.

Let us return to the step in which we consider different subsets of the Matching constraints.

Above we showed that SimMatch(A10, {1, 2, 3}) is finite. Now let us focus on S = ∅ and construct

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 29. Publication date: January 2020.



What Is Decidable about Gradual Types? 29:17

SimMatch(A10, ∅):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn
[[x(succ(x(true)))]] = Dyn
⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x
succ(x(true)) [[succ]] = Dyn

⟨x(true)⟩ = Dyn
[[succ(x(true))]] = Dyn
⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int
x(true) [[x]] = Dyn

⟨true⟩ = Dyn
[[x(true)]] = Dyn
⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, ∅). Notice that SimMatch(A10, ∅) has 13 Equality constraints.
Those 13 Equality constraints are unsatisfiable because of two constraints [[succ]] = Dyn and

[[succ]] = int → int. So, Sol(SimMatch(A10, ∅)) = ∅.

Let us return to the step in which we consider different subsets of the Matching constraints. From

the case of S = ∅, we see that for sets S where 2 < S , we have that SimMatch(A10, S) contains an
unsatisfiable subset of Equality constraints. So, for each of those cases, Sol(SimMatch(A10, S)) = ∅.

Now let us focus on S = {2} and construct SimMatch(A10, {2}):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn
[[x(succ(x(true)))]] = Dyn
⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x
succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]
succ [[succ]] = int → int

x(true) [[x]] = Dyn
⟨true⟩ = Dyn
[[x(true)]] = Dyn
⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {2}). Notice that SimMatch(A10, {2}) has 11 Equality con-

straints. Those 11 Equality constraints are satisfiable and have the following most general unifier

(φ2), where p,q are type variables:
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v : φ2(v)
[[λx .x(succ(x(true)))]] : Dyn → Dyn

x : Dyn
[[x(succ(x(true)))]] : Dyn

[[x]] : Dyn
⟨succ(x(true))⟩ : Dyn

[[succ]] : int → int
⟨x(true)⟩ : int

[[succ(x(true))]] : int
⟨true⟩ : Dyn

[[x(true)]] : Dyn
[[true]] : bool

Next we apply φ2 to A
′
, The result is that SimEq(SimMatch(A10, {2}),φ2) is:

Dyn ∼ int
int ∼ Dyn
Dyn ∼ bool

Let us use A2 to denote the above set of 3 Consistency constraints.

Next we apply SimCon to A2. The effect is that SimCon(A2) = ∅. Finally we observe that

Bounded(∅). Now we use Theorem 4.8 to conclude that Sol(∅) is finite.
Let us consider the case of S = {1, 2} and construct SimMatch(A10, {1, 2}):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]] = ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]
x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]
⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int
x(true) [[x]] = Dyn

⟨true⟩ = Dyn
[[x(true)]] = Dyn
⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {1, 2}). Notice that SimMatch(A10, {1, 2}) has 9 Equality

constraints. Those 9 Equality constraints are unsatisfiable because of two constraints [[x]] =
⟨succ(x(true))⟩ → [[x(succ(x(true)))]] and [[x]] = Dyn. So, Sol(SimMatch(A10, {1, 2})) = ∅.
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Let us consider the case of S = {2, 3} and construct SimMatch(A10, {2, 3}):

λx .x(succ(x(true))) [[λx .x(succ(x(true)))]] = x → [[x(succ(x(true)))]]
x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn
[[x(succ(x(true)))]] = Dyn
⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x
succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]
succ [[succ]] = int → int

x(true) [[x]] = ⟨true⟩ → [[x(true)]]
⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {2, 3}). Notice that SimMatch(A10, {2, 3}) has 9 Equality

constraints. Those 9 Equality constraints are unsatisfiable because of two constraints [[x]] = Dyn
and [[x]] = ⟨true⟩ → [[x(true)]]. So, Sol(SimMatch(A10, {2, 3})) = ∅.

In summary, we have shown that in every case of S , we find that SimMatch(A10, S) is finite.
We conclude that Sol(Gen(E, Γ)) is finite, which in turn means that MigΓ(E) is finite.

4.5 Example of How Our Finiteness Checker Works: λx .xx

E = λx .xx

Γ = [ ]

First we construct Gen(E, Γ):

λx .xx [[λx .xx]] = x → [[xx]]
Dyn ⊑ x

xx [[x]]� ⟨x⟩ → [[xx]]
⟨x⟩ ∼ [[x]]

x [[x]] = x
x [[x]] = x

Notice that the listing above has two occurrences of [[x]] = x . Viewed as a set, Gen(E, Γ) consists of
5 constraints.

Next we apply SimPrec to Gen(E, Γ). This step removes Dyn ⊑ x , which leaves us with the

following 4 constraints.

λx .xx [[λx .xx]] = x → [[xx]]
xx [[x]]� ⟨x⟩ → [[xx]]

⟨x⟩ ∼ [[x]]
x [[x]] = x

Let us useA4 to denote the above set of 4 constraints. In the listing ofA3, we have a single Matching

constraint, which for brevity of notation, we will give number 1:

1 : [[x]]� ⟨x⟩ → [[xx]]

Nowwemust consider all subsets of {1}. For each S ⊆ {1}, wemust determinewhether SimMatch(A4, S)
has finitely many solutions.
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Let us focus on S = {1} and construct SimMatch(A4, {1}):

λx .xx [[λx .xx]] = x → [[xx]]
xx [[x]] = ⟨x⟩ → [[xx]]

⟨x⟩ ∼ [[x]]
x [[x]] = x

Next we apply SimEq to SimMatch(A4, {1}). Notice that SimMatch(A10, {1}) has 3 Equality con-

straints. Those 3 Equality constraints are satisfiable and have the following most general unifier

(φ1), where p,q are type variables:

v : φ1(v)
[[λx .xx]] : (p → q) → q

[[xx]] : q
x : p → q

[[x]] : p → q
⟨x⟩ : p

Let us use A′
to denote the subset of 1 Consistency constraint in SimMatch(A4, {1}), which is:

⟨x⟩ ∼ [[x]]

Next we apply φ4 to A
′
, The result is that SimEq(SimMatch(A10, {1, 2, 3}),φ1) is:

p ∼ p → q

Let us use A1 to denote the above set of 1 Consistency constraint.

Next we apply SimCon to A1. The effect is no change: SimCon(A1) = A1. We observe that

Bounded(A1) is false. Now we use Theorem 4.8 to conclude that Sol(A1) is infinite.

In Appendix C of the supplementary material, we show that p ∼ (p → q) has no maximal

solution, so λx .xx has no maximal migration.

5 THE TOP-CHOICE PROBLEM
The top-choice problem is: given E, Γ, does MigΓ(E) have a greatest element? In other words, is

MigΓ(E) finite and does it have a single maximal migration? We begin with the observation that if

MigΓ(E) has a greatest element, then MigΓ(E) is finite.

Theorem 5.1. If MigΓ(E) has a greatest element, then MigΓ(E) is finite.

Proof. Suppose MigΓ(E) has a greatest element Eд , which means that any migration E ′
must

satisfy E ⊑ E ′ ⊑ Eд . Thus, MigΓ(E) ⊆ { E ′ | E ⊑ E ′ ⊑ Eд }. We have from Theorem 2.4 that

{ E ′ | E ⊑ E ′ ⊑ Eд } is finite so also MigΓ(E) is finite. □

Given Theorem 5.1, our algorithm for solving the top-choice problem begins with checking that

MigΓ(E) is finite. We do this with the finiteness checker that we presented in Section 4. Next we

explore MigΓ(E) and look for elements E ′
that are maximal elements MigΓ(E), that is, MigΓ(E

′) is a

singleton. We do this with the singleton checker that we presented in Section 3.
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Putting it all together. Our top-choice checker works as follows:

Algorithm: Top-Choice Checker.
Instance: E, Γ, where FV (E) ⊆ Dom(Γ).
Problem: Does MigΓ(E) have a greatest element?

Method: 1. int numMax = 0

2. if (MigΓ(E) is finite) {
3. 2

Terms workset = {E}
4. 2

Terms done = ∅

5. while (workset , ∅) {

6. pick E ′ ∈ workset
7. remove E ′

from workset and add E ′
to done

8. if (∃T ′
: Γ ⊢ E ′

: T ′) {

9. if (MigΓ(E
′) is a singleton) {

10. numMax = numMax + 1

11. } else {

12. add (S(E ′) \ done) to workset
13. }

14. }

15. }

16. }

17. return (numMax == 1)

Theorem 5.2. Algorithm Top-Choice Checker returns true iff MigΓ(E) has a greatest element.

Proof. We will go through the algorithm step by step.

Step 1: we declare an integer variable numMax that holds the number of maximal elements of

MigΓ(E) encountered so far.

Step 2: we check that MigΓ(E) is finite because otherwise MigΓ(E) has no greatest element.

Additionally, the finiteness check ensures that the search space is finite.

Steps 3–4: we declare two sets of terms, called workset and done. The idea is classical: workset
contains terms that we must process, while done holds terms that we have already processed.

Step 5: we will iterate until workset is done. This is guaranteed to terminate because of the

finiteness check in Step 2.

Steps 6–7: we pick a term E’ to process and update workset and done accordingly.

Step 8: we check that E ′
type checks; otherwise E ′ < MigΓ(E).

Steps 9–12: we check whether E ′
is a maximal element ofMigΓ(E). If so, then we increase numMax

by 1, and otherwise use S(E ′) to add terms that are one step above E ′
to workset, except for those

that we have processed already.

Step 17: if we found a single maximal element, then that element is the greatest element, and we

return true. Otherwise, we return false. □

Theorem 5.3. We can solve the top-choice problem in EXPTIME.

Proof. We have from Theorem 5.2 that Algorithm Top-Choice Checker is correct. We have

from Section 4 that the search space is bounded by a term of a size that is exponential in the size of

the input. The total number of terms between E and that bound is exponential in the size of the

input. For each term in the search space, we do an amount of work that is polynomial in the size of

the term. In summary, the algorithm runs in EXPTIME. □
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6 THE MAXIMALITY PROBLEM
The question of whether the maximality problem is decidable remains an open problem. In this

section we will give a semi-algorithm for the maximality problem and we will show that the

problem is NP-hard.

6.1 A Semi-algorithm for the Maximality Problem
We can adapt the top-choice checker in Section 5 to become a semi-algorithm for the maximality

problem. We make two modifications, as follows.

First, we skip the check of finiteness. This will ensure that we may find maximal migrations for

any input program, but may also make the modified algorithm fail to terminate on some inputs.

Second, we make the algorithm output the maximal migrations, rather than merely counting

them.

This semi-algorithm works well for our microbenchmarks: whenever maximal migrations exist,

our algorithm finds at least one of them. In practice, we stop the algorithm at a given level of the

migration space.

We can adapt the top-choice checker based on programmer needs. For example, we can stop the

search based on the desired length of the type annotations, based on the time available, or based

on the number of migrations that we want to inspect.

6.2 The Maximality Problem Is NP-hard
Theorem 6.1. The maximality problem is NP-hard.

Proof. We will do a polynomial-time reduction from 3SAT to the maximality problem. Let

F =

m∧
i=1

li1 ∨ li2 ∨ li3

be a formula in which each li j is either a Boolean variable xk or its negation x̄k , where k ∈ 1..n.
From F , we construct the following λ-term EF and type environment ΓF :

EF = λv1 : (Dyn → int). . . . λvm : (Dyn → int).

(v1v1) + . . . + (vmvm) +

([λx̄1 : Dyn.(λy1 : int. x̄1)((vд11
x̄1) + . . . + (vд

1m
1

x̄1))]

([λx1 : Dyn.(λz1 : int. x1)((vf11
x1) + . . . + (vf1m

1

x1))] true)) + . . . +

([λx̄n : Dyn.(λyn : int. x̄n)((vдn1
x̄n) + . . . + (vдnmn

x̄n))]

([λxn : Dyn.(λzn : int. xn)((vfn1
xn) + . . . + (vfnmn

xn))] true))

ΓF = [ + : int → int → int ]

The environment ΓF assigns a type to the binary operator +; we write uses of + in infix notation.

The program EF has a variable vi for every clause in F , and it has an expression that binds xk and

x̄k for every variable xk in F .
We use the following notation in the definition of EF . If a variable xk occursmk times in F , we

use fkp to denote the index of the clause that contains the pth occurrence. Similarly, if a variable x̄k
occurs m̄k times in F , we use дkp to denote the index of the clause that contains the pth occurrence.
The size of EF is linear in the size of F , and we can map F to EF in polynomial time in a

straightforward manner. Additionally, we can check easily that

ΓF ⊢ EF : (Dyn → int) → . . .→ (Dyn → int) → int
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The idea of EF is that the expressions (vi vi ) cause EF to have no maximal migration, unless the

other expressions change that. Specifically, we showed in Section 4.5 that λx .x x has no maximal

migration; here each (vi vi ) plays the role of (x x). So, for EF to have a maximal migration, we

need the other expressions to put a bound on every vi . This happens exactly when F is satisfiable.

We will show the following property: F is satisfiable iff EF has a maximal migration.

Let us consider Gen(EF , Γ) (Section 4.2). In essence, Gen(EF , Γ) has three interesting subsets.

First, for each vi , we have in EF the expression (vivi ). This expression ensures that any type of

vi , is of the form ri → int where ri ∼ (ri → int) (see Section 4.5).

Second, for each literal in the i’th clause in F , which is li1 ∨ li2 ∨ li3, we have in EF the expression

(vili j ). This expression generates the constraint ri ∼ li j (see the constraint generation rule for

application in Section 4.2).

Third, for a variable xk we have in EF the expression

. . . + ([λx̄n : Dyn.(λyn : int. x̄n)(. . .)]([λxn : Dyn.(λzn : int. xn)(. . .)] true))

The backbone of this expression is . . . + ([λx̄n : Dyn.x̄n]([λxn : Dyn.xn] true)). This expression
generates the constraints bool ∼ xk ∼ x̄k ∼ int (see Appendix D of the supplementary material).

This is shorthand for the three constraints (bool ∼ xk ) and (xk ∼ x̄k ) and (x̄k ∼ int). The above
expression ensures that we cannot have at the same time that xk is bool and that x̄k is int.

Forwards direction. Suppose F is satisfiable and letψ be a solution of F . Define φ as follows:

For each xk such thatψ (xk ) = true, define φ(xk ) = bool and φ(x̄k ) = Dyn.
For each xk such thatψ (xk ) = false, define φ(xk ) = Dyn and φ(x̄k ) = int.
For each vi , define φ(vi ) = Dyn → int.
We will show that φ is a maximal solution of Gen(EF , Γ). First we show that φ is a solution. We

will consider, in turn, each of the three interesting subsets of Gen(EF , Γ). (1) Given that φ(vi ) =
Dyn → int, we have φ(ri ) = Dyn. So, we have that φ |= ri ∼ (ri → int). (2) For a constraint

ri ∼ li j , we have φ(ri ) = Dyn, so φ |= ri ∼ li j . (3) For a variable xk , we can check easily that

φ |= bool ∼ xk ∼ x̄k ∼ int.
Second we will show that φ is maximal.

Consider xk . Notice that while one of φ(xk ) and φ(x̄k ) is Dyn, we cannot replace that Dyn with
anything larger because of the constraint bool ∼ xk ∼ x̄k ∼ int.
Consider vi . From that F is satisfiable, we have that we can find j ∈ {1, 2, 3} such that φ(li j ) ∈

{bool, int}. From the constraint ri ∼ li j , we have that φ(ri ) ∈ {Dyn, bool, int}. We also have the

constraint ri ∼ (ri → int), so we see that we must have φ(ri ) = Dyn. We conclude that we cannot

replace φ(vi ) with anything larger.

Backwards direction. Suppose Gen(EF , Γ) has a maximal solution φ. Define a mappingψ as

follows.

ψ (x) =

{
true if φ(x) = bool
false if φ(x) = Dyn

We will show thatψ satisfies F . Consider the i’th clause of F . Given that φ is a maximal solution of

Gen(EF , Γ), we have that φ(vi ) is constrained by something, which must happen in a constraint of

the form ri ∼ li j . Given that φ is a maximal solution of Gen(EF , Γ), we know that, for each x , the
mapping φ assigns either [φ(x) = bool and φ(x̄) = Dyn], or [φ(x) = Dyn and φ(x̄) = int]. So, we
can find j ∈ {1, 2, 3} such that φ(li j ) ∈ {bool, int}. We have two cases.

First, suppose li j is x . From φ(li j ) = φ(x) ∈ {bool, int}, we get φ(x) = bool, henceψ (x) = true,
which means thatψ satisfies the i’th clause.
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Second, suppose li j is x̄ . From φ(li j ) = φ(x̄) ∈ {bool, int}, we get φ(x̄) = int, hence φ(x) = Dyn,
henceψ (x) = false, which means thatψ satisfies the i’th clause. □

6.3 Example of How the NP-hardness Proof Works

F2 = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3)

From F2, we construct the following λ-term EF2
and type environment Γ:

EF2
= λv1 : (Dyn → int). λv2 : (Dyn → int).

(v1v1) + (v2v2) +

([λx̄1 : Dyn.(λy1 : int. x̄1)(v2x̄1)]

([λx1 : Dyn.(λz1 : int. x1)(v1x1)] true)) +

([λx̄2 : Dyn.(λy2 : int. x̄2)(v1x̄2)]

([λx2 : Dyn.(λz2 : int. x2)(v2x2)] true)) +

([λx̄3 : Dyn.(λyn : int. x̄3) 0]

([λx3 : Dyn.(λz3 : int. x3)((v1x3) + (v2x3))] true))

Γ = [ + : int → int → int ]

Notice the use of 0 in EF2
; it signals an empty sum that stems from that x̄3 does not occur in F2.

We have that F2 is satisfiable and we will show that Gen(EF2
, Γ) has a maximal solution. Here are

the three interesting subsets of Gen(EF2
, Γ):

r1 ∼ (r1 → int) r1 ∼ x1 r2 ∼ x̄1 bool ∼ x1 ∼ x̄1 ∼ int
r2 ∼ (r2 → int) r1 ∼ x̄2 r2 ∼ x2 bool ∼ x2 ∼ x̄2 ∼ int

r1 ∼ x3 r2 ∼ x3 bool ∼ x3 ∼ x̄3 ∼ int

We see that all of x1, x̄1, x2, x̄2, x3, x̄3 are bounded. Now we turn to r1 and r2. Let focus on a particular

satisfying assignment for F2, namely ψ defined as follows: ψ (x1) = true and ψ (x2) = true and

ψ (x3) = false. Fromψ we get φ:

φ(x1) = bool φ(x2) = bool φ(x3) = Dyn φ(v1) = Dyn → int = r1 → int
φ(x̄1) = Dyn φ(x̄2) = Dyn φ(x̄3) = int φ(v2) = Dyn → int = r2 → int

We can check easily that φ |= Gen(EF2
, Γ). Additionally, we can check that φ is a maximal solution.

Let us check every use of Dyn. First consider φ(x̄1) = Dyn. We see that the constraints bool ∼

x1 ∼ x̄1 ∼ int and φ(x1) = bool imply that we must have

bool = φ(x1) ∼ x̄1 ∼ int

Thus, we cannot improve φ(x̄1) = Dyn. Similar reasoning applies to the cases of φ(x̄2) = Dyn and
φ(x3) = Dyn. Next consider φ(v1) = Dyn → int. We see that the constraints r1 ∼ (r1 → int) and
r1 ∼ x1 and that φ(x1) = bool imply that we must have

(r1 → int) ∼ r1 ∼ φ(x1) = bool

Thus, we cannot improve φ(v1) = Dyn → int. Similar reasoning applies to the case of φ(v2) =

Dyn → int.
We can do a similar analysis of other satisfying assignments for F2 and in each case we will find

that Gen(EF , Γ) has a maximal solution.
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Benchmark Singleton? Top Choice? Finite? Has Max?

λx .x(succ(x)) ✓ ✓ ✓ ✓
λx .x(succ(x(true))) × ✓ ✓ ✓
λx . + (x 4)(x true) × ✓ ✓ ✓

(λx .x)4 × ✓ ✓ ✓
succ((λy.y)((λx .x)true)) × × ✓ ✓

λx .x × × × ✓
λx .λy.yxx × × × ✓
λx .(λy.x)xx × × × ✓

λx .(λf .(λx .λy.x)f (f x))(λz.1) × × × ✓
λx .xx × × × ×

(λx .λy.y(xI )(xK))∆ × × × ?

selfInterpreter × × × ?

Fig. 4. Our benchmarks. Legend: ✓ means yes, and × means no, and ? means unknown.

6.4 Can the NP-hardness Proof Be Adapted to Other Problems?
For each of the top-choice problem and the finiteness problem, we have an exponential-time upper

bound on the time complexity but no lower bound. Let us consider whether the NP-hardness proof

for the maximality problem can be adapted to the top-choice problem or the finiteness problem.

We make two observations based on the example in Section 6.3.

First, if we try other satisfying assignments of F than the ψ that we used in the example, we

get other maximal solutions of Gen(E, Γ) that are different fromψ . So, MigΓ(EF ) does not have a
greatest element, hence the proof is of no help with proving a lower bound for top-choice problem.

Second, consider an assignment φ that assigns φ(x1) = φ(x̄1) = φ(x2) = φ(x̄2) = φ(x3) = φ(x̄3) =

Dyn. This part of the definition of φ satisfies most of the constraints in Gen(E, Γ) and leaves only

r1 ∼ (r1 → int) and r2 ∼ (r2 → int). However, those constraints have infinitely many solutions.

So, MigΓ(EF ) has infinitely many solutions, hence the proof is of no help with proving a lower

bound for finiteness problem.

7 IMPLEMENTATION AND EXPERIMENTAL RESULTS
Implementation. We have implemented our algorithms in Haskell, for a total of 1,159 lines of

code. This includes a type checker, a singleton checker, a top-choice checker, a finiteness checker,

and a search for a maximal migration. In addition to answers to the singleton, top-choice, and

finiteness questions, our tool outputs a maximal migration, if one exists.

Benchmarks. Figure 4 shows our benchmarks (column 1) and their key features (columns 2–5):

is the set of migrations a singleton, does it have a greatest element, is it finite, and does it have a

maximal element?

Notice that the benchmarks include the programs in Figure 1. Additionally, the benchmark

(λx .λy.y(xI )(xK))∆ has the curious property that it is strongly normalizing but untypable in

System F [Giannini and Rocca 1988, Section 4]. It uses the abbreviations I = λa.a, K = λb .λc .b, and
∆ = λd .dd . Finally, the benchmark selfInterpreter is the lambda-term

Y [λe .λm.m(λx .x)(λmn.(em)(en))(λm.λv .e(mv))]

which is a self-interpreter for pure lambda-calculus [Mogensen 1992, Section 3]. It uses the abbrevi-

ation Y = λh.(λx .h(xx))(λx .h(xx)).
For all benchmarks, we use Γ = [succ : int → int , + : int → int → int].
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Benchmark Singleton? Top Choice? Finite? Has Max?

λx .x(succ(x)) 326 ± 18ns 131 ± 2 µs 126 ± 5 µs 545 ± 12ns

λx .x(succ(x(true))) 147 ± 5 ns 313 ± 6 µs 296 ± 4 µs 3 ± 1 µs

λx . + (x 4)(x true) 168 ± 3 ns 533 ± 14µs 517 ± 12µs 3 ± 1 µs

(λx .x)4 132 ± 6 ns 35 ± 1 µs 33 ± 1 µs 531 ± 32ns

succ((λy.y)((λx .x)true)) 335 ± 3 ns 209 ± 4 µs 196 ± 4 µs 2 µs

λx .x 46 ± 3 ns 6 ± 1 µs 6 µs 371 ± 20ns

λx .λy.yxx 132 ± 2 ns 19 ± 1 µs 19 µs 2 ms

λx .(λy.x)xx 142 ± 3 ns 25 µs 25 ± 1 µs 2 ± 1 µs

λx .(λf .(λx .λy.x)f (f x))(λz.1) 213 ± 3 ns 77 ± 2 µs 77 ± 2 µs 4 ± 1 ms

λx .xx 88 ns 8 µs 8 µs 2 ms

(λx .λy.y(xI )(xK))∆ 310 ± 4 ns 131 ± 3 µs 131 ± 3 µs 367 ± 7 ms

selfInterpreter 672 ± 15ns 587 ± 14µs 586 ± 17µs 5 s

Fig. 5. Execution times.

Benchmark Maximal migration

λx .x(succ(x)) λx : Dyn.x(succ(x))
λx .x(succ(x(true))) λx : (Dyn → int).x(succ(x(true)))
λx . + (x 4)(x true) λx : (Dyn → int). + (x 4)(x true)

(λx .x)4 (λx : int.x)4
succ((λy.y)((λx .x)true)) succ((λy : int.y)((λx : Dyn.x)true))

λx .x λx : int.x
λx .λy.yxx λx : int.λy : (int → int → int).yxx
λx .(λy.x)xx λx : Dyn.(λy : int.x)xx

λx .(λf .(λx .λy.x)f (f x))(λz.1) λx : int.(λf : Dyn.(λx : int.λy : int.x)f (f x))(λz : int.1)
λx .xx no maximal migration

(λx .λy.y(xI )(xK))∆ unknown
selfInterpreter unknown

Fig. 6. Our tool’s output of maximal migrations.

Execution. We ran each of our tools 100 times or more on each benchmark. Figure 5 shows the

mean and standard deviation of the timing in each case. We left out the standard deviation in cases

where it rounded off to zero. We managed the process with the help of Criterion, a benchmarking

tool for Haskell, http://hackage.haskell.org/package/criterion.

Our results. Our tool answers all the questions in Figure 1 correctly, with the footnote that

for λx .xx , we stopped the exploration at level 5, and for the last two benchmarks, we stopped

the exploration at level 4. The early termination is due to that our maximality checker is a semi-

algorithm rather than a decision procedure, and for those three programs, no maximal solution

exists. Figure 6 shows maximal migrations that our tool has given as output. We have used our

tool to check that each of those maximal migrations type checks and is indeed maximal. We do the

maximality check by using our singleton checker to check that its set of migrations is a singleton.

Comparison. Our tool uses the same input format as the tool that accompanies the paper by

Campora et al. [2018]. This enables a head-to-head comparison of our tool and their tool, for our

benchmarks. Their tools supports multiple lambda constructors; we used the one called CDLam,
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Benchmark POPL 2018 tool Our tool

λx .x(succ(x)) Dyn → Dyn Dyn → Dyn
λx .x(succ(x(true))) Dyn → Dyn (Dyn → int) → int
λx . + (x 4)(x true) Dyn → int (Dyn → int) → int

(λx .x)4 Dyn int
succ((λy.y)((λx .x)true)) int int

λx .x Dyn → Dyn int → int
λx .λy.yxx Dyn → Dyn → Dyn int → (int → int → int) → int
λx .(λy.x)xx Dyn → Dyn Dyn → Dyn

λx .(λf .(λx .λy.x)f (f x))(λz.1) Dyn → Dyn int → int
λx .xx Dyn → Dyn no maximal migration

(λx .λy.y(xI )(xK))∆ Dyn → Dyn unknown
selfInterpreter Dyn unknown

Fig. 7. The types for the entire program produced by the tool from [Campora et al. 2018] and by our tool.

which provides the most flexibility for migration. We ran their function called measureMG, which
produces a type for the entire program but outputs nomigration. So, we compare the types generated

by the two tools, see Figure 7. Notice that for every benchmark, the type produced by their tool is

⊑-related to the type produced by our tool. For six benchmarks, the types are different, for three

benchmarks the types are the same, and for one benchmark, no maximal migration exists but the

tool from [Campora et al. 2018] produces a type anyway. The differences highlight that the tool

from [Campora et al. 2018] may produce non-maximal migrations.

The reduction. We have implemented the reduction in Section 6.2 from 3SAT to the maximality

problem. Each use of the reductionmaps a Boolean formula to a lambda-term.We have experimented

withmapping several Boolean formulas to lambda-terms and found that in each case, our maximality

checker gave the expected result. In particular, the maximality checker found correctly (in 1.11

ms) that EF2
from Section 6.3 has a maximal migration. As another example, we tried the following

unsatisfiable Boolean formula F3.

F3 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧

(x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

We stopped exploration at level 3 (after 478 ms), reflecting that EF3
has no maximal migration.

8 RELATEDWORK
We will discuss related work on type migration, type inference, and gradual typing design.

Type migration. The most closely related work is the POPL 2018 paper by Campora et al. [2018],

which presented an efficient approach to migrating a program, but did not address our four decision

problems.We saw in Section 7 that the approach in Campora et al. [2018] may produce non-maximal

migrations; we will give an example of this below. The approach of Campora et al. [2018] integrates

gradual types and variational types. Specifically, for each λ-bound variable, the approach uses

constraints and unification to produce a static variational type that potentially can replace Dyn.
If the program has n such variables, those choices between Dyn and a static type create a finite

migration space of size 2
n
, which the approach searches efficiently.

For example, consider the program (λx : Dyn.xx), which has no maximal migration. The con-

straint generation procedure generates a constraint of the form α ≈⊤ d ⟨Dyn,α⟩ → β . Here,
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α, β are type variables, d ⟨Dyn,α⟩ is a type that signals a choice between Dyn and α , and ≈⊤ is a

relationship that must be established via unification. The unification procedure finds that if we

pick α , then α = α → β has no solution, so the approach picks Dyn. As a final step, the approach
converts β to Dyn, and outputs the type (Dyn → Dyn) for α , which happens to be the type of the

entire term (as shown in Figure 7). The example shows that cases where unification fails tend

to push the results towards types with more uses of Dyn. Notice also that the approach’s finite

migration space ensures that it always find a migration, even for (λx : Dyn.xx) which has no

maximal migration. We found that the approach is of little help with deciding questions such as

the maximality problem and the finiteness problem.

Siek and Vachharajani [2008] presented the first algorithm for type migration with gradual

types. Their starting point was the type system by Siek and Taha [2006], for which they did type

migration with a unification-based algorithm. Later, Garcia and Cimini [2015] presented a different

unification-based algorithm for a similar type system. Both Siek and Vachharajani [2008] and Garcia

and Cimini [2015] proved correctness, while neither had a report on experiments. Those two papers

and our paper use similar forms of consistency constraints, but they differ in what questions they

answer about such constraints. Specifically, Siek and Vachharajani [2008] and Garcia and Cimini

[2015] focus on finding a single solution, while our paper studies properties of the set of solutions.

Rastogi et al. [2012] presented a migration algorithm for an object-oriented language with

subtyping. They proved that the added types cannot cause new run-time failures.

Type inference. Type inference has a stricter goal than type migration, namely to infer static

types for all variables, rather than to improve types as much as possible. We have two categories of

type inference: static and dynamic. Static type inference includes the inference tool for Python by

Hassan et al. [2018], and the inference tool for Dart by Heinze et al. [2016]. Some approaches to

type inference add types for the purpose of program understanding but without a guarantee that

the resulting program type checks. A recent example is the inference tool for Python by Xu et al.

[2016]. Static type inference also includes the foundational work by Siek and Vachharajani [2008]

and Garcia and Cimini [2015]. One property of the inference algorithm in [Garcia and Cimini 2015]

is that it outputs a type containing type variables whose instantiation is not decided. This raises the

question of what to do with those type variables. This bring us to dynamic type inference, which

includes [Miyazaki et al. 2018]. The paper [Miyazaki et al. 2018] builds on the work of [Garcia and

Cimini 2015] and proposed to delay the decision about what to do with the type variable until

runtime, when those variables are instantiated.

Gradual typing design. Researchers have explored many interpretations and extensions of gradual

types. Future work could pursue type migration that supports subtyping [Garcia et al. 2016; Siek

and Taha 2007; Vitousek et al. 2014], refinement types [Lehmann and Éric Tanter 2017], monotonic

references [Siek et al. 2015b], and polymorphism and set theoretic types [Castagna et al. 2019]. In

particular, future work can consider our decision problems for those richer type systems.

9 CONCLUSION
We have presented algorithms and a hardness result for deciding key properties of programs in the

gradually typed lambda-calculus. Several problems remain open, including whether the maximality

problem is decidable, whether the finiteness problem is NP-hard, and whether the top-choice

problem can be approached more efficiently than using the finiteness checker as a subroutine.
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A PROOF OF THE UNIQUE TYPE THEOREM
We will prove Theorem 2.1, which we restate here:

∀E, Γ,T ,T ′
, if Γ ⊢ E : T and Γ ⊢ E : T ′

, then T = T ′
.

Proof. We proceed by induction on the derivation of Γ ⊢ E : T . We will do a case analysis based

on the last rule that was used to derive Γ ⊢ E : T .
Case: T-Num. The last rule that was used to derive Γ ⊢ E : T ′

must be T-Num, so T = int = T ′
.

Case: T-True. The last rule that was used to derive Γ ⊢ E : T ′
must be T-True, so T = bool = T ′

.

Case: T-False. The last rule that was used to derive Γ ⊢ E : T ′
must be T-False, so T = bool = T ′

.

Case: T-Var. The last rule that was used to derive Γ ⊢ E : T ′
must be T-Var, so T = Γ(x) = T ′

.

Case: T-Abs. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ, x : T1 ⊢ F : T2

Γ ⊢ (λx : T1.F ) : T1 → T2

(T-Abs)
.

The last rule that was used to derive Γ ⊢ E : T ′
must be T-Abs, as follows:

Γ, x : T1 ⊢ F : T ′
2

Γ ⊢ (λx : T1.F ) : T1 → T ′
2

(T-Abs)
.

For the subderivations Γ, x : T1 ⊢ F : T2 and Γ, x : T1 ⊢ F : T ′
2
, we apply the Induction Hy-

pothesis to get that T2 = T
′
2
. We conclude T1 → T2 = T1 → T ′

2
.

Case: T-App. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ ⊢ E1 : T1

T1 � (T11 → T12)

Γ ⊢ E2 : T2

T2 ∼ T11 (T-App)
Γ ⊢ E1 E2 : T12

The last rule that was used to derive Γ ⊢ E : T ′
must be T-App, as follows:

Γ ⊢ E1 : T ′
1

T ′
1
� (T ′

11
→ T ′

12
)

Γ ⊢ E2 : T ′
2

T ′
2
∼ T ′

11 (T-App)
Γ ⊢ E1 E2 : T ′

12

For the subderivations Γ ⊢ E1 : T1 and Γ ⊢ E1 : T ′
1
, we apply the Induction Hypothesis to get

that T1 = T ′
1
. From T1 = T ′

1
and T1 � (T11 → T12) and T ′

1
� (T ′

11
→ T ′

12
), we conclude that

(T11 → T12) = (T ′
11

→ T ′
12
), hence T12 = T

′
12
. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 29. Publication date: January 2020.



What Is Decidable about Gradual Types? 29:31

B PROOF OF THE ORDER-ISOMORPHISM
We will prove Theorem 4.1, which we restate here:

∀E, Γ : if FV (E) ⊆ Dom(Γ), then (MigΓ(E), ⊑) and (Sol(Gen(E, Γ)), ≤) are order-isomorphic.

Proof. If φ is a function from type variables to types, then we define the functionGφ from terms

to terms:

Gφ (true) = true

Gφ (false) = false

Gφ (n) = n

Gφ (x) = x

Gφ (λx : T .F ) = λx : φ(x).Gφ (F )

Gφ (E1 E2) = Gφ (E1) Gφ (E2)

Let E, Γ be given; they remain fixed in the remainder of the proof. Now we define the following

function αE with the help of Gφ :

αE : Sol(Gen(E, Γ)) → MigΓ(E)
αE (φ) = Gφ (E)

Notice that Γ plays no role in the definitions of Gφ and αE . We will show that αE is a well-defined

order-isomorphism. We will do this in four steps: we will show that αE is well defined, injective,

and surjective, and that it preserves order.

Well defined. We will show that if φ ∈ Sol(Gen(E, Γ)), then αE (φ) ∈ MigΓ(E). Suppose φ ∈

Sol(Gen(E, Γ)). We must show

E ⊑ αE (φ) and ∃T ′
: Γ ⊢ αE (φ) : T ′

.

In order to show E ⊑ αE (φ), notice that E and αE (φ) differ only in the type annotations of bound

variables. If we have no bound variables in E, then E = αE (φ). Otherwise, notice that for every
occurrence of λx : T .F in E, we have that φ |= T ⊑ x and Gφ (λx : T .F ) = λx : φ(x).Gφ (F ). So, we
can show by induction on E that E ⊑ αE (φ).

Define Extend(Γ, E) to be Γ extended with (x : T1) for each occurrence in E of λx : T1.F . In order

to show ∃T ′
: Γ ⊢ αE (φ) : T ′

, we have from Theorem 2.2 that it is sufficient to prove the stronger

statement:

∀E ′
subterm of E : Extend(Γ,Gφ (E)) ⊢ Gφ (E

′) : φ([[E ′]]).

We proceed by induction on E ′
.

Case: E ′ = true. Notice that φ |= [[E ′]] = bool and use T-True.
Case: E ′ = false. Notice that φ |= [[E ′]] = bool and use T-False.
Case: E ′ = n. Notice that φ |= [[E ′]] = int and use T-Num.

Case: E ′ = x , where x is free in E. Notice that φ |= [[E ′]] = Γ(x) and Extend(Γ,Gφ (E))(x) = Γ(x)
and use T-Var.
Case: E ′ = x , where x is bound in E. Notice that φ |= [[E ′]] = x and Extend(Γ,Gφ (E))(x) = φ(x)

and use T-Var.
Case: E ′ = λx : T1.F . Notice that φ |= [[E ′]] = x → [[F ]]. Notice that Extend(Γ,Gφ (E)), (x : T1) =

Extend(Γ,Gφ (E)). So, from the induction hypothesis we have Extend(Γ,Gφ (E)) ⊢ Gφ (F ) : φ([[F ]]).
Now we use T-Abs.
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Case: E ′ = E1 E2. Notice that φ |= [[E1]] � ⟨E2⟩ → [[E1 E2]] and φ |= ⟨E2⟩ ∼ [[E2]]. From the

induction hypothesis we have Extend(Γ,Gφ (E)) ⊢ Gφ (E1) : φ([[E1]]) and Extend(Γ,Gφ (E)) ⊢ Gφ (E2) :

φ([[E2]]). Now we use T-App.

Injective. We will show that αE is injective, that is, we will show that

if αE (φ) = αE (φ
′), then φ = φ ′

.

Suppose αE (φ) = αE (φ
′). From the definition of αE we see that for every occurrence in E of

λx : T1.F , we have φ(x) = φ ′(x). We will show that for every occurrence of a subterm E ′
in

E, we have φ([[E ′]]) = φ ′([[E ′]]), and for every occurrence of a subterm (E1 E2) in E, we have

φ(⟨E2⟩) = φ
′(⟨E2⟩). We proceed by induction on E ′

.

Case: E ′ = true. From φ |= [[E ′]] = bool and φ ′ |= [[E ′]] = bool, we have φ([[E ′]]) = bool =
φ ′([[E ′]]).

Case: E ′ = false. From φ |= [[E ′]] = bool and φ ′ |= [[E ′]] = bool, we have φ([[E ′]]) = bool =
φ ′([[E ′]]).

Case: E ′ = n. From φ |= [[E ′]] = int and φ ′ |= [[E ′]] = int, we have φ([[E ′]]) = int = φ ′([[E ′]]).

Case: E ′ = x , where x is free in E. From φ |= [[E ′]] = Γ(x) and φ ′ |= [[E ′]] = Γ(x), we have

φ([[E ′]]) = Γ(x) = φ ′([[E ′]]).

Case: E ′ = x , where x is bound in E. From φ |= [[E ′]] = x and φ ′ |= [[E ′]] = x , we have

φ([[E ′]]) = φ(x) = φ ′(x) = φ ′([[E ′]]).

Case: E ′ = λx : T1.F . From the induction hypothesis, we have φ([[F ]]) = φ ′([[F ]]). From φ |=

[[E ′]] = x → [[F ]] and φ ′ |= [[E ′]] = x → [[F ]], we have φ([[E ′]]) = φ(x) → φ([[F ]]) = φ ′(x) →
φ ′([[F ]]) = φ ′([[E ′]]).

Case: E ′ = E1 E2. From the induction hypothesis, we have φ([[E1]]) = φ
′([[E1]]) and φ([[E2]]) =

φ ′([[E2]]). From φ([[E1]]) = φ
′([[E1]]) and φ |= [[E1]] � ⟨E2⟩ → [[E1 E2]] and φ

′ |= [[E1]] � ⟨E2⟩ →

[[E1 E2]], we have φ([[E
′]]) = φ ′([[E ′]]).

Surjective. We will show that αE is surjective, that is, we will show that

if E0 ∈ MigΓ(E), then ∃φ ∈ Sol(Gen(E, Γ)) : E0 = αE (φ).

From E0 ∈ MigΓ(E) we have E ⊑ E0 and T0 such that Γ ⊢ E0 : T0. From Γ ⊢ E0 : T0 and Theorem 2.2,

we have that Extend(Γ, E0) ⊢ E0 : T0.

We define φ as follows. Consider a derivation D of Extend(Γ, E0) ⊢ E0 : T0. First, for x ∈

Dom(Extend(Γ, E0)), define φ(x) = Extend(Γ, E0)(x). Second, for every occurrence of a subterm E ′

of E0, find the judgment in D of the form Γ′ ⊢ E ′
: T ′

, and define φ([[E ′]]) = T ′
. Third, for every

occurrence of a subterm E ′
of the form E1 E2 in E0, find the use of T-App for E ′

and in that use, find

the condition T1 � (T11 → T12), and define φ(⟨E2⟩) = T11.

We must show that φ ∈ Sol(Gen(E, Γ)). We will do a case analysis of the occurrences of subterms

E ′
in E.
Case: E ′ = true. From (T-True) we have that φ([[E ′]]) = bool so φ |= [[E ′]] = bool.
Case: E ′ = false. From (T-False) we have that φ([[E ′]]) = bool so φ |= [[E ′]] = bool.
Case: E ′ = n. From (T-Num) we have that φ([[E ′]]) = int so φ |= [[E ′]] = int.
Case: E ′ = x , where x is free in E. From (T-Var) we have that φ([[E ′]]) = φ(x) = Γ(x) so

φ |= [[E ′]] = Γ(x).
Case: E ′ = x , where x is bound in E. From (T-Var) we have that φ([[E ′]]) = φ(x) so φ |= [[E ′]] = x .
Case: E ′ = λx : T1.F . The derivation D contains this use of T-Abs:

Γ, x : T1 ⊢ F : T2

Γ ⊢ (λx : T1.F ) : T1 → T2

(T-Abs)
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So, φ(x) = T1 and φ([[F ]]) = T2 and φ([[λx : T1.F ]]) = T1 → T2. So, φ |= [[λx : T1.F ]] = x → [[F ]].
Additionally, we have E0 ∈ MigΓ(E) so if the type annotation of x in E is S , then we have S ⊑ T1 =

φ(x), so φ |= S ⊑ x .
Case: E ′ = E1 E2. The derivation D contains this use of T-App:

Γ ⊢ E1 : T1

T1 � (T11 → T12)

Γ ⊢ E2 : T2

T2 ∼ T11 (T-App)
Γ ⊢ E1 E2 : T12

So,φ([[E1]]) = T1 andφ([[E2]]) = T2 andφ([[E1 E2]] = T12 andφ(⟨E2⟩) = T11. We haveT1�(T11 → T12).

So, φ |= [[E1]]� ⟨E2⟩ → [[E1 E2]]. Additionally, we have T2 ∼ T11. So, φ |= ⟨E2⟩ ∼ [[E2]].

Notice that αE (φ) = Gφ (E) = E0. The reason is that E0 differs from E only in the type annotations

of bound variables, and for the case of a subterm in E0 of the form λx : T .F , we have that Gφ
replaces the type annotation of x with φ(x) = T .

Preserves order. We will show that αE preserves order, that is, we will show that

if φ ≤ φ ′
, then αE (φ) ⊑ αE (φ

′).

We will prove the following stronger statement:

if φ ≤ φ ′
, then ∀E ′

: Gφ (E
′) ⊑ Gφ ′(E ′).

Suppose that φ ≤ φ ′
. We proceed by induction on E ′

.

Case: E ′ = true. We have Gφ (E
′) = true = Gφ ′(E ′).

Case: E ′ = false. We have Gφ (E
′) = false = Gφ ′(E ′).

Case: E ′ = n. We have Gφ (E
′) = n = Gφ ′(E ′).

Case: E ′ = x . We have Gφ (E
′) = x = Gφ ′(E ′).

Case: E ′ = λx : T .F . From induction hypothesis, we have Gφ (F ) ⊑ Gφ ′(F ). From φ ≤ φ ′
we have

φ(x) ⊑ φ ′(x). From the definition ofGφ and (P-Abs) we haveGφ (λx : T .F ) = λx : φ(x).Gφ (F ) ⊑ λx :

φ ′(x).Gφ ′(F ) = Gφ ′(λx : T .F ).
Case: E ′ = E1 E2. From induction hypothesis, we have Gφ (E1) ⊑ Gφ ′(E1) and Gφ (E2) ⊑ Gφ ′(E2).

From the definition of Gφ and (P-App) we have Gφ (E1 E2) = Gφ (E1) Gφ (E2) ⊑ Gφ ′(E1) Gφ ′(E2) =

Gφ ′(E1 E2).

The completes the induction proof. We conclude:

αE (φ) = Gφ (E) ⊑ Gφ ′E = αE (φ
′)

In summary, we have proved all four properties: αE is well defined, injective, and surjective, and it

preserves order. □
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C THE CONSTRAINT p ∼ (p → q) HAS NOMAXIMAL SOLUTION
Lemma C.1. {(p,q) | p ∼ (p → q)} = {(Dyn,b)} ∪ {(a → b, c) | a ∼ (a → b) ∧ b ∼ c}.

Proof. We will consider each direction in turn.

First consider ⊆. Suppose we have (p,q) such that p ∼ (p → q). Let us divide into four cases of p.
In one case, we have p = Dyn. So, (p,q) ∈ {(Dyn,b)}. In another case, we have p = bool. However,
this is impossible because p ∼ (p → q). In a third case, we have p = int. However, this is impossible

because p ∼ (p → q). In a fourth case, we have p = a → b, for some a,b. We have (a → b) ∼ ((a →

b) → q), so a ∼ (a → b) and (b ∼ q). So, (p,q) ∈ {(a → b, c) | a ∼ (a → b) ∧ b ∼ c}.
Second consider ⊇. We divide into two subcases. In one case, consider (Dyn,b). We have Dyn ∼

(Dyn → b), so (Dyn,b) ∈ (p,q) | p ∼ (p → q). In another case, consider (a → b, c), where a ∼

(a → b) ∧ b ∼ c . We have (a → b) ∼ ((a → b) → c), so (a → b, c) ∈ (p,q) | p ∼ (p → q). □

Define

bump(Dyn) = Dyn → Dyn

bump(s → t) = bump(s) → t

Lemma C.2. bump(a) ∼ (bump(a) → b) and (a ⊑ bump(a)).

Proof. We proceed by induction on a.
In the base case of a = Dyn, we have bump(Dyn) = (Dyn → Dyn) ∼ ((Dyn → Dyn) → b) =

(bump(a) → b) and Dyn ⊑ bump(Dyn) as required.
In the induction step, consider a = (s → t). The induction hypothesis is that bump(a) ∼

(bump(a) → b)and(a ⊑ bump(a)), that is, bump((s → t)) ∼ (bump((s → t)) → b) and ((s → t) ⊑
bump((s → t))). From those properties we get that (bump(s) → t) ∼ ((bump(s) → t) → b) and
((s → t) ⊑ (bump(s) → t)). This implies that

bump(s) ∼ (bump(s) → t)

t ∼ b

s ⊑ bump(s)

Now let us proceed to proceed to do what we need to do. We have

bump(a)

= bump(s → t)

= (bump(s) → t)

∼ ((bump(s) → t) → b

= (bump(s → t)) → b

= bump(a) → b

Also,

a = (s → t) ⊑ (bump(s)) → t = bump(s → t) = bump(a)

□
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Lemma C.3. {(p,q) | p ∼ (p → q)} has no maximal element.

Proof. Suppose we have (p,q) ∈ {(p,q) | p ∼ (p → q)}. Our goal is to show that there exists

(c,d) such that

(p,q) , (c,d) ∧

(c,d) ∈ {(p,q) | p ∼ (p → q)} ∧

p ⊑ c ∧

q ⊑ d

We divide into two cases, based on Lemma C.1.

First, suppose p = Dyn. We pick c = Dyn → Dyn and d = q. This satisfies the requirements

because

(Dyn,q) , ((Dyn → Dyn),q) ∧

(Dyn → Dyn) ∼ ((Dyn → Dyn) → q) ∧

Dyn ⊑ (Dyn → Dyn) ∧

q ⊑ q.

Second, suppose p = a → b. We have (a → b) ∼ ((a → b) → q so a ∼ (a → b) and b ∼ q. We pick

c = bump(a) → b and d = q. This satisfies the requirements because of Lemma C.2:

((a → b),q) , ((bump(a) → b),q) ∧

(bump(a) → b) ∼ ((bump(a) → b) → q) ∧

(a → b) ⊑ (bump(a) → b) ∧

q ⊑ q

□
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D THE CONSTRAINTS FOR succ((λy.y)((λx .x)true)) HAVE TWOMAXIMAL
SOLUTIONS

E = succ((λy.y)((λx .x)true))

Γ = [ succ : int → int ]

First we construct Gen(E, Γ):

succ [[succ]] = int → int
succ((λy.y)((λx .x)true)) [[succ]]� ⟨(λy.y)((λx .x)true)⟩ → [[succ((λy.y)((λx .x)true))]]

⟨(λy.y)((λx .x)true)⟩ ∼ [[(λy.y)((λx .x)true)]]
λy.y [[λy.y]] = y → [[y]]

Dyn ⊑ y
y [[y]] = y

(λy.y)((λx .x)true) [[λy.y]]� ⟨(λx .x)true⟩ → [[(λy.y)((λx .x)true)]]
⟨(λx .x)true⟩ ∼ [[(λx .x)true]]

λx .x [[λx .x]] = x → [[x]]
Dyn ⊑ x

x [[x]] = x
(λx .x)true [[λx .x]]� ⟨true⟩ → [[(λx .x)true]]

⟨true⟩ ∼ [[true]]
true [[true]] = bool

Next we apply SimPrec to Gen(E, Γ). This step removes Dyn ⊑ y and Dyn ⊑ x , which leaves us with

the following 12 constraints.

succ [[succ]] = int → int
succ((λy.y)((λx .x)true)) [[succ]]� ⟨(λy.y)((λx .x)true)⟩ → [[succ((λy.y)((λx .x)true))]]

⟨(λy.y)((λx .x)true)⟩ ∼ [[(λy.y)((λx .x)true)]]
λy.y [[λy.y]] = y → [[y]]

y [[y]] = y
(λy.y)((λx .x)true) [[λy.y]]� ⟨(λx .x)true⟩ → [[(λy.y)((λx .x)true)]]

⟨(λx .x)true⟩ ∼ [[(λx .x)true]]
λx .x [[λx .x]] = x → [[x]]

x [[x]] = x
(λx .x)true [[λx .x]]� ⟨true⟩ → [[(λx .x)true]]

⟨true⟩ ∼ [[true]]
true [[true]] = bool

Let us use A12 to denote the above set of 12 constraints. In the listing A12, we have three Matching

constraints, which for brevity of notation, we will number from 1 to 3, as follows:

1 : [[succ]]� ⟨(λy.y)((λx .x)true)⟩ → [[succ((λy.y)((λx .x)true))]]

2 : [[λy.y]]� ⟨(λx .x)true⟩ → [[(λy.y)((λx .x)true)]]

3 : [[λx .x]]� ⟨true⟩ → [[(λx .x)true]]

Now we must consider all subsets of {1, 2, 3}. For each S ⊆ {1, 2, 3}, we must determine whether

SimMatch(A12, S) has finitely many solutions.
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We can see easily that we must focus on S = {1, 2, 3}; for any of the other choices of S , we have
that SimMatch(A12, S) is unsatisfiable. So, we construct SimMatch(A12, {1, 2, 3}):

succ [[succ]] = int → int
succ((λy.y)((λx .x)true)) [[succ]] = ⟨(λy.y)((λx .x)true)⟩ → [[succ((λy.y)((λx .x)true))]]

⟨(λy.y)((λx .x)true)⟩ ∼ [[(λy.y)((λx .x)true)]]
λy.y [[λy.y]] = y → [[y]]

y [[y]] = y
(λy.y)((λx .x)true) [[λy.y]] = ⟨(λx .x)true⟩ → [[(λy.y)((λx .x)true)]]

⟨(λx .x)true⟩ ∼ [[(λx .x)true]]
λx .x [[λx .x]] = x → [[x]]

x [[x]] = x
(λx .x)true [[λx .x]] = ⟨true⟩ → [[(λx .x)true]]

⟨true⟩ ∼ [[true]]
true [[true]] = bool

Next we apply SimEq to SimMatch(A12, {1, 2, 3}). Notice that SimMatch(A12, {1, 2, 3}) has 9 Equal-
ity constraints. Those 9 Equality constraints are satisfiable and have the following most general

unifier (φ123), where p,q are type variables:

v : φ123(v)
[[succ]] : int → int

[[succ((λy.y)((λx .x)true))]] : int
⟨(λy.y)((λx .x)true)⟩ : int
[[(λy.y)((λx .x)true)]] : q

[[λy.y]] : q → q
y : q

[[y]] : q
⟨(λx .x)true⟩ : q
[[(λx .x)true]] : p

[[λx .x]] : p → p
x : p

[[x]] : p
⟨true⟩ : p
[[true]] : bool

Let us use A′
to denote the subset of 3 Consistency constraints in SimMatch(A12, {1, 2, 3}), which is:

⟨(λy.y)((λx .x)true)⟩ ∼ [[(λy.y)((λx .x)true)]]

⟨(λx .x)true⟩ ∼ [[(λx .x)true]]

⟨true⟩ ∼ [[true]]

Next we apply φ123 to A
′
. The result is that SimEq(SimMatch(A12, {1, 2, 3}),φ123) is:

int ∼ q

q ∼ p

p ∼ bool
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Let us use A123 to denote the above set of 3 Consistency constraints. Next we apply SimCon to A123.

The effect is to change int ∼ q into q ∼ int:

q ∼ int

q ∼ p

p ∼ bool

Let us useAcm to denote the above set of 3 Consistency constraints. We observe that Bounded(Acm).

Now we use Theorem 4.8 to conclude that Sol(Acm) is finite.

Notice that SimCon(A123) has three solutions:

φ1 x : Dyn; y : Dyn
φ2 x : Dyn; y : int
φ3 x : bool; y : Dyn

Notice that each of φ2 and φ3 is a maximal solution, but neither is a greatest solution.
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